
The Alexander polynomial is symmetric: ∆K(t) = ∆k(t
−1)

following R.H. Fox and G. Torres [Ann. Math. 59 #2 (3-1954) 211-218]

In previous lectures we have shown that if we define the (single-variable) Alexander for
oriented knots and links, then the effect of reversing the orientations on all components is,
up to multiplication by ±tn, to replace the variable t with its inverse t−1. We now show
that the Alexander polynomial itself is invariant (up to the same multiplications by units)
under this transformation. We shall do this using the Fox derivative approach to ∆K(t).

Fox’s approach begins with a presentation G =< A|R > for the fundamental group
π1(S

3 \ K) of the complement of a knot or link K, together with a choice of surjec-
tive homomorphism G → Z. For consistency, we will make a canonical choice using the
orientation of K, by insisting that a loop which circles the knot using the righthand rule
(curling around the knot in the direction of our fingers when the thumb is aligned with the
orientation) is mapped to the generator t, and a loop travelling the opposite direction is
mapped to t−1. [These are basically the Wirtinger generators (and their inverses), which
we noted previously are carried under abelianization to the generator or its inverse.]

To compute ∆K(t) we start by computing the Fox derivatives of the relators rj = xε1j1 · · ·x
εk
jk

with respect to each of the generators xi, by accumulating terms in an (initially empty)
sum as follows: reading rj from left to right, each occurance of the generator xi occurs as
rj = uxiv or rj = ux−1

i v. In the first case we add u, and in the second case we add −ux−1

i .
The resulting sum should be thought of as an element in the group ring of the free group

F (X) generated by the symbols X , and is denoted
∂rj

∂xi
. The canonical homomorphism ψ

from F (X) to G (sending each xi to xi), followed by our chosen homomomorphism φ from
G to Z =< t| >, induces ring homomorphisms between their group rings; their composition

sends each
∂rj

∂xi
to a (Laurent) polynomial in t with coefficients in Z.

We have seen that these polynomials, when assembled into a ‘Jacobian’ matrix

J =
(∂rj

∂xi

)ψφ
,

yields a matrix which depends upon the presentation for G chosen. But any two (finite)
presentations of G can be transformed one to the other by Teitze transformations, and
the effect on the Jacobian matrix under these moves can be codified. In particular, the
resulting moves on the Jacobian do not change (for J an n×m matrix) the ideal (in Z[Z])
generated by the (m − k) × (m − k) minor determinants of J . In particular, taking the
ideal I1 generated by the (m − 1) × (m − 1) minors, I1 is principal, and a generator for
I1 is the Alexander polynomial ∆K(t) (well defined up to multiplication by a unit ±tn in
Z[Z]).

To prove that the Alexander polynomial is symmmetric, Fox and Torres construct a pair
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of ‘dual’ presentations for G, as follows: Give a diagram of the knot/link K, partition the
loop representing K into alternating ‘oversegments’ and ‘undersegments’: an oversegment
passes over every crossing in the diagram that it meets, and an undersegment passes
under. For example, in the Wirtinger presentation we take the oversegments to be the
entire segment running between successive undercrossings as we traverse the knot using
the orientation, and the undersegments are the remaining short segments passing under
each crossing. The figure below shows a more effecient way to do this for the knot 820.
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The basic idea is that an over/under representation of K enables us to build two ‘dual’
presentations of G, which we will use to establish our symmetry result. The idea is that
the oversegments give generators of a presentation for G and the undersegments provide
the relators for the presentation; the opposite is true for the second presentation. The idea
is really the same as for the Wirtinger presentation: choosing our nose as the basepoint for
π(S3 \K), each oversegment corrresponds to a loop which runs from our nose to a point
just to the right of the segment (using the orientation on K to determine ‘right’), passes
under the oversegment, and then directly back to our nose. The relators are determined
by drawing a loop around each undersegment and which closely follows it. From a fixed
starting point we will cross a sequence of oversegments; reading off this sequence (thinking
of ourselves as actually travelling slightly below the plane of the knot projection) reads off
a word in the generators which is our relator. To be precise about things, we will orient
the loops around the undersegments to run counterclockwise around and oversegment, and
clockwise around an undersegment. The proof that G is presented with generators given
by the loops around oversegments and relators given by reading off the words surrounding
undersegments is essentially identical to that for the Wirtinger presentation; in that case
the loop under and surrounding a crossing is identical to the loop surrounding the under-
segment. [Of course, we did not present that proof, but any discussion of the Wirtinger
presentation can be adapted with no change to this more general setting.

Oversegments and loops around undersegments therefore gives us one presentation. (Note
that we, mostly for convenience, label the segments around the projection as x1, y1, x2, y2, . . . .)
The ‘dual’ presentation comes essentially from changing our point of view to behind the
projection plane. Then what we have called undersegments become oversegments and vice

2



versa. So we can apply the same argument to build a second presentation. We will however
retain a viewpoint from the front of the projection plane, in order to discuss both presen-
tation at the same time. The ‘under’ presentation will have generators yj corresponding
to undersegments; the specific loop representing the generator we will think of as running
from right to left across the undersegment, but this loop is now starting at a point lying
behind the projection plane, and passing over the strand. The important point: as
a result, when we map to Z using the orientation, each yj will map to t−1 (and not t).
The relators for the underpresentation come from reading the words in the yj that the
loops running around the oversegments (and thought of as lying slightly above the pro-
jection plane) spell out. It is essentially because our basepoint for the underpresentation
lies behind the projection plane that we orient the loops around the oversegments in the
opposite direction to the loops around undersegments for the overpresentation: from the
perspective of the basepoint, we are really reading around the loops in the same directions.

The basic point here is that the generators for the overpresentation come from the over-
segments and the relators come from the undersegments. For the underpresentation it
is the exact opposite: the generators come from the undersegments and the relators

come from the oversegments. Our plan then is to compare computations of
∂rj

∂xi
and

∂si

∂yj
, and show that they are identical (after replacing t with t−1). This will show that

the Jacobian matrices for the two presentations (after changing the base rings to Z[Z])
satisfy (Jover)

ψφ(t) = [(Junder)
ψφ(t−1)]T . Therefore, since a matrix and its transpose

have the same determinant, (after changing the variable) the ideals generated by the
codimenskion-1 minor determinants are identical, and therefore have the same generator,
i.e., ∆K(t) = ∆K(t−1), as desired.

Each of the two Fox derivatives
∂rj

∂xi
and

∂si

∂yj
is a formal sum, over the specific instances

of the variable xi (resp. yj) in the relator rj (resp xi). These instances occur in one of
three ways, which we will treat in turn. The idea is that each instance can be paired with
a corresponding instance in the other Fox derivative, and that the contributions to the Fox
derivatives of each is identical once we replace t with t−1 in one of the two computations.

First, note that if the oversegment xi and the undersegment yj do not meet, then xi does
not appear in rj and yj does not appear in si, so both Fox derivative are 0, and so are equal
(after replacing t in one with t−1...!). So in what follows we need only concern ourselves
with cases where the two segments (and so, in particular, the two loops rj and si) intersect.

The first instance, which we did not explore in class, is the fact that the loops representing
rj and si must actually represent based loops, using a fixed and common basepoint (one
for all of the rj , another for all of the si). This is in fact the single greatest pitfall in
carrying out fundamental group computations; we must use a single basepoint throughout
the computation, which in essence really means that for a loop such as the rj and si we
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wish to use, we should read the word starting at a fixed point along the loop, and must
pre- and post-pend a path to a fixed and common basepoint. (Failure to do so means that
a word we might be using is actually a conjugate of the word we really should be using.)
But this is not nearly so difficult an issue with the Fox calculus as it might seem. Because
of the fact that the Fox derivative satisfies (using the shorthand notation ux for the Fox
derivative of u w.r.t. x) (uv)x = ux + u(vx), we find that for a relator r,

(uru−1)x = ux + u(rx) + ur(u−1)x = ux + urx − uru−1ux

But when we push forward from F (X) to Z, every relator r is sent to (1 in G, and so is sent
to) 1 in Z, so uru−1 is sent to uu−1 = 1, so (uru−1)x = u(rx). The effect of conjugation
on the Fox derivative of a relator, that is, the effect of the choice of path to the basepoint,
is therefore to multiply by the (image in Z of the) conjugator (on the left).

For our comparison of Fox derivatives, we choose fixed basepoints lying above/below the
same point p in the projection plane and away from the knot projection, and choose
fixed paths γj , δi from p to each of the loops rj and si lying slightly below/above the
projection plane; the paths γj should avoid the undersegments (and therefore pass under
the oversegments), and the δi should similarly avoid the oversegments. [This is possible
because, in the projection plane, the complement of the set of oversegments is connected
(and the same for the collection of undersegments); this is most easily seen by induction
on the number of segments.]
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But! We really would like to use a basepoint q lying at the intersection of rj and si (for
reasons that will become apparent). That is, in our computations and comparisons, we
would like to simply read around the relator starting from a common point of intersection.
So we move the endpoints of γj and δi, by appending a segment of the loops rj and si,
to have these loops start and end at q. (Essentially, we are writing γjrjγ

−1

j as γjuvγ
−1

j =

[γju]vu[u
−1γ−1

j ] = (γju)vu(γju)
−1; these two words are equal in the free group and so

have the same Fox derivative.) But now these appended paths, which we will still call γj
and δi, begin and end at the same point in the projection plane, and so form a loop η.
The γj half of this loop misses the undersegments, and the δi half misses the oversegments.
Therefore, since the points of intersection of the knot itself with the loop η must pair up
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(by following the segments around the knot projection), the net number of times that each
of γj and δi cross their respective segments from right to left must be the same; either the
knot recrosses the two paths at points with the same ‘color’, in which case it must pass
across the same path in opposite directions (yielding a net contribution of t0 = 1 in Z[Z]),
or the knot recrosses with the opposite color, in which case it crosses the other path in the
same direction, pairing up the two crossings. [These facts are apparent from the figure: to
establish them formally we can argue that if the parity were opposite then we could (from
K and the paths) construct a loop in the projection plane that intersects the projection
of K an odd number of times, which is impossible.]

The net effect is that the exponent sum of the x’s in γj must equal the exponent sum of
the y’s in δi. If this common exponent sum is n, then conjugating rj by γj multiplies the
Fox derivative by tn, and conjugating si by δi multiplies the Fox derivative by t−n (since
each of the yj is sent to t−1). Thus to take into account the path to a more conveniently
chosen basepoint, each Fox derivative changes in a way consistent with our goal; if the
terms of the derivative are equal (after variable change), then the conjugated terms are,
as well. So in what follows we can ignore the effect of the path from the basepoint, and
act as if the basepoint lies where we want it, at the intersection of the two loops rj and si.
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The most typical instances of the xi, yj in our relators occur where the oversegment xi
crosses the undersegment yj . Each such crossing generates a pair of instances of xi in rj
and a pair of instances of yj in si. Choosing our basepoint q to lie at the intersection of
the two loops as indicated in the figure above, we can read off the relators as

rj = x−1
i uxju

−1xivx
−1
j+1v

−1 and si = yjay
−1
i−1a

−1y−1
j byib

−1

If we then compute the contributions to the Fox derivatives of each of the two relators, we
find

For rj : −x
−1
i + x−1

i uxju
−1 and for si : 1− yjay

−1
i−1a

−1y−1
j
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Then sending the x’s to t and the y’s to t−1, u is sent to tm and a is sent to tm, so we get
the contributions:

For rj : −t
−1 + t−1tntt−n = 1− t−1 and for si : 1− t−1tmtt−mt = 1− t

So the contribution, as a function of t, to
∂rj

∂xi
is equal to the contribution to

∂si

∂yj
, evaluated

at t−1.

q

q

xy
ii-1 xi yi

The final contribution comes from the fact that rj contains instances of xj and xj+1, and
si contains instances of yi−1 and yi. So if i = j, or if i = j + 1 (so j = i− 1), each has a
single additional instance of the variable we are computing the Fox derivative with respect
to. These occur precisely when the segments we are using follow one after the other, as in
the figure above. In these cases, choosing our basepoint for comparison to be the point q
depicted in the figure, the contribution of the remaining instance of each variable can be
computed simply as

i = j + 1:
∂rj

∂xi
has an additional −x−1

i , evaluating to −t−1, while
∂si

∂yj
has an additional

−y−1

i−1, evaluating to −t;

i = j:
∂rj

∂xi
has an additional xi, evaluating to t, while

∂si

∂yj
has an additional yi, evaluating

to t−1.

As before, the first is then equal to the second, evaluated at t−1.

Therefore, we find that for these dual presentations, the Jacobian matrices satisfy

(Jover)
ψφ(t) = [(Junder)

ψφ(t−1)]T .

As remarked above, this implies that the Alexander ideals have generators that are equal
to one another, after the variable t in one is replaced with t−1. Since they are also equal to
one another (being the result of the Fox calculus applied to two presentations of isomorphic
groups), we conclude that

∆K(t) = ∆k(t
−1),

up to multiplication by units ±tn in the group ring Z[Z].
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