
9.7. REALIZATIONS OF GEODESIC LAMINATIONS FOR SURFACE GROUPS

PL0 as a convex polyhedron in R
n , so that changes of stereographic coordinates

are piecewise projective, although this finite-dimensional picture cannot be strictly
correct, since there is no fixed subdivision sufficient to make all coordinate changes.)

            

Corollary 9.7.3. PL0(S) is homeomorphic to a sphere.

Proof that 9.7.2 implies 9.7.3. Let γ ∈ PL0(S) be any essentially complete
lamination. Let τ be any train track carrying γ. Then PL0(S) is the union of two
coordinate systems Vτ ∪ Sτ , which are mapped to convex sets in Euclidean space. 9.63

If ∆γ 6= γ, nonetheless the complement of ∆γ in Vτ is homeomorphic to Vτ − γ, so
PL0(S) is homeomorphic to the one-point compactification of Sγ.

Corollary 9.7.4. When PL0(S) has dimension greater than 1, it does not have
a projective structure. (In other words, the pieces in changes of coordinates have not
been eliminated.)

Proof that 9.7.3 implies 9.7.4. The only projective structure on Sn, when
n > 1, is the standard one, since Sn is simply connected. The binary relation of
antipodality is natural in this structure. What would be the antipodal lamination
for a simple closed curve α? It is easy to construct a diffeomorphism fixing α but
moving any other given lamination. (If i(γ, α) 6= 0, the Dehn twist around α will
do.)

Remark. When PL0(S) is one-dimensional (that is, when S is the punctured
torus or the quadruply punctured sphere), the PIP structure does come from a pro-
jective structure, equivalent to RP 1 . The natural transformations of PL0(S) are
necessarily integral—in PSL2(Z).
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Proof of 9.7.2. Don’t blink. Let γ be essentially complete. For each region Ri

of S−γ, consider a smaller region ri of the same shape but with finite points, rotated
so its points alternate with cusps of Ri and pierce very slightly through the sides of
Ri, ending on a leaf of γ. 9.64

            

By 9.5.4, 9.5.2 and 9.3.9, both ends of each leaf of γ are dense in γ, so the regions
ri separate leaves of γ into arcs. Each region of S − γ − Uiri must be a rectangle
with two edges on ∂ri and two on γ, since ri covers the “interesting” part of Ri. (Or,
prove this by area, χ). Collapse all rectangles, identifying the ri edges with each
other, and obtain a surface S′ homotopy-equivalent to S, made of Uiri, where ∂ri
projects to a train track τ . (Equivalently, one may think of S −Uiri as made of very
wide corridors, with the horizontal direction given approximately by γ).
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9.65

If we take shrinking sequences of regions ri,j in this manner, we obtain a sequence
of train tracks τj which obviously have the property that τj carries τk when j > k.
Let γ′ ∈ PL0(S)−∆γ be any lamination not topologically equivalent to γ. From the
density in γ of ends of leaves of γ, it follows that whenever leaves of γ and γ′ cross,
they cross at an angle. There is a lower bound to this angle. It also follows that
γ ∪ γ′ cuts S into pieces which are compact except for cusps of S.

            

When Ri is an asymptotic triangle, for instance, it contains exactly one region of
S − γ− γ′ which is a hexagon, and all other regions of S − γ − γ′ are rectangles. For
sufficiently high j, the rij can be isotoped, without changing the leaves of γ which
they touch, into the complement of γ′. It follows that γ′ projects nicely to τj .
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Stereographic coordinates give a method of computing and understanding inter-
section number. The transverse measure for γ projects to a “tangential” measure νγ
on each of the train tracks τi: i.e., νγ(b) is the γ-transverse length of the sides of the

rectangle projecting to b.
            

It is clear that for any α ∈ML0 which is determined by a measure µα on τi

9.7.5. i(α, γ) =
∑
b

µα(b) · νγ(b).

Thus, in the coordinate system Vτi in ML0, intersection with γ is a linear function.

To make this observation more useful, we can reverse the process of finding a fam-
ily of “transverse” train tracks τi depending on a lamination γ. Suppose we are given 9.67

an essentially complete train track τ , and a non-negative function (or “tangential”
measure) ν on the branches of b, subject only to the triangle inequalities

a+ b− c ≥ 0 a+ c− b ≥ 0 b+ c− a ≥ 0

whenever a, b and c are the total ν-lengths of the sides of any triangle in S − τ . We
shall construct a “train track” τ∗ dual to τ , where we permit regions of S − τ∗ to be
bigons as well as ordinary types of admissible regions—let us call τ∗ a bigon track.
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τ∗ is constructed by shrinking each region Ri of S−τ and rotating to obtain a region
R∗i ⊂ Ri whose points alternate with points of Ri. These points are joined using one
more branch b∗ crossing each branch b of τ ; branches b∗1 and b∗2 are confluent at a
vertex of R∗ whenever b1 and b2 lie on the same side of R. Note that there is a bigon
in S − τ∗ for each switch in τ .

The tangential measure ν for τ determines a transverse measure defined on the
branches of τ∗ of the form b∗. This extends uniquely to a transverse for τ∗ when S
is not a punctured torus. 9.68

            

When S is the punctured torus, then τ must look like this, up to the homeomorphism
(drawn on the abelian cover of T − p):

Thurston — The Geometry and Topology of 3-Manifolds 267



9. ALGEBRAIC CONVERGENCE
            

Note that each side of the punctured bigon is incident to each branch of τ . Therefore,
the tangential measure ν has an extension to a transverse measure ν∗ for τ∗, which
is unique if we impose the condition that the two sides of R∗ have equal transverse
measure.

            

9.69

A transverse measure on a bigon track determines a measured geodesic lamination,
by the reasoning of 8.9.4. When τ is an essentially complete train track, an open
subset of ML0 is determined by a function µ on the branches of τ subject to a
condition for each switch that ∑

b∈I
µ(b) =

∑
b∈O

µ(b),

where I and O are the sets of “incoming” and “outgoing” branches. Dually, “tangen-
tial” measure ν on the branches of τ determines an element of ML0 (via ν∗), but two
functions ν and ν′ determine the same element if ν is obtained from ν′ by a process
of adding a constant to the incoming branches of a switch, and subtracting the same
constant from the outgoing branches—or, in other words, if ν − ν′ annihilates all
transverse measures for τ (using the obvious inner product ν · µ =

∑
ν(b)µ(b)). In

fact, this operation on ν merely has the effect of switching “trains” from one side of
a bigon to the other.

268 Thurston — The Geometry and Topology of 3-Manifolds



9.7. REALIZATIONS OF GEODESIC LAMINATIONS FOR SURFACE GROUPS
            

(Some care must be taken to obtain ν′ from ν by a sequence of elementary “switching”
operations without going through negative numbers. We leave this as an exercise to 9.70

the reader.)
Given an essentially complete train track τ , we now have two canonical coordinate

systems Vτ and V ∗τ in ML0 or PL0. If γ ∈ Vτ and γ∗ ∈ V ∗τ are defined by measures
µγ and νγ∗ on τ , then i(γ, γ∗) is given by the inner product

i(γ, γ∗) =
∑
b∈τ

µγ(b)νγ∗(b).

To see this, consider the universal cover of S. By an Euler characteristic or area
argument, no path on τ̃ can intersect a path on τ̃∗ more than once. This implies the
formula when γ and γ′ are simple geodesics, hence, by continuity, for all measured
geodesic laminations.

Proposition 9.7.4. Formula 9.7.3 holds for all γ ∈ Vτ and γ∗ ∈ V ∗τ . Intersection
number is a bilinear function on Vτ × V ∗τ (in ML0).

This can be interpreted as a more intrinsic justification for the linear structure
on the coordinate systems Vτ—the linear structure can be reconstructed from the
embedding of Vτ in the dual space of the vector space with basis γ∗ ∈ V ∗τ .

Corollary 9.7.5. If γ, γ′ ∈ ML0 are not topologically conjugate and if at least
one of them is essentially complete, then there are neighborhoods U and U ′ of γ and
γ′ with linear structures in which intersection number is bilinear.

9.71

Proof. Apply 9.7.4 to one of the train tracks τi constructed in 9.7.2.

Remark. More generally, the only requirement for obtaining this local bilinearity
near γ and γ′ is that the complementary regions of γ ∪ γ′ are “atomic” and that
S−γ have no closed non-peripheral curves. To find an appropriate τ , simply burrow
out regions of ri, “transverse” to γ with points going between strands of γ′, so the
regions ri cut all leaves of γ into arcs. Then collapse to a train track carrying γ′ and
“transverse” to γ, as in 9.7.2.
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What is the image of Rn of stereographic coordinates Sγ for ML0(S)? To under-
stand this, consider a system of train tracks

τ1 → τ2 → · · · → τk → · · ·

defining Sγ. A “transverse” measure for τi pushes forward to a “transverse” measure
for τj , for j > i. If we drop the restriction that the measure on τi is non-negative, 9.72

still it often pushes forward to a positive measure on τj . The image of Sγ is the set of
such arbitrary “transverse” measures on τ1 which eventually become positive when
pushed far enough forward.

For γ′ ∈ ∆γ, let νγ′ be a “tangential” measure on τ1 defining γ′.

Proposition 9.7.6. The image of Sγ is the set of all “transverse,” not necessar-
ily positive, measures µ on τ1 such that for all γ′ ∈ ∆γ, νγ′ · µ > 0.

(Note that the functions νγ′ · µ and νγ′′ · µ are distinct for γ′ 6= γ′′.)

In particular, note that if ∆γ = γ, the image of stereographic coordinates for ML0

is a half-space, or for PL0 the image is Rn . If ∆γ is a k-simplex, then the image of Sγ
for PL0 is of the form int (∆k)×Rn−k . (This image is defined only up to projective
equivalence, until a normalization is made.)
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Proof. The condition that νγ′ · µ > 0 is clearly necessary: intersection number
i(γ′, γ′′) for γ′ ∈ ∆γ, γ

′′ ∈ Sγ is bilinear and given by the formula 9.73

i(γ′, γ′′) = νγ′ · µγ′′.
Consider any transverse measure µ on τ1 such that µ is always non-positive when

pushed forward to τi. Let bi be a branch of τi such that the push-forward of µ is non-
positive on bi. This branch bi, for high i, comes from a very long and thin rectangle
ρi. There is a standard construction for a transverse measure coming from a limit
of the average transverse counting measures of one of the sides of ρi. To make this
more concrete, one can map ρi in a natural way to τ∗j for j ≤ i.

(In general, whenever an essentially complete train track τ carries a train track
σ, then σ∗ carries τ∗

σ → τ

σ∗ ← τ∗.

To see this, embed σ in a narrow corridor around τ , so that branches of τ∗ do not pass
through switches of σ. Now σ∗ is obtained by squeezing all intersections of branches
of τ∗ with a single branch of σ to a single point, and then eliminating any bigons
contained in a single region of S − σ.)

            

9.74

On τ∗1 , ρi is a finite but very long path. The average number of times ρi tranverses
a branch of τ∗1 gives a function νi which almost satisfies the switch condition, but not
quite. Passing to a limit point of {νi} one obtains a “transverse” measure ν for τ∗1 ,
whose lamination topologically equals γ, since it comes from a transverse measure on
τ∗i , for all i. Clearly ν · µ ≤ 0, since νi comes frm a function supported on a single
branch b∗i of τ∗i , and µ(bi) < 0.

For γ ∈ ML0 let Zγ ⊂ ML0 consist of γ′ such that i(γ, γ′) = 0. Let Cγ consist
of laminations γ′ not intersecting γ, i.e., such that support of γ′ is disjoint from the
support of γ. An arbitrary element of Zγ is an element of Cγ , together with some
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measure on γ. The same symbols will be used to denote the images of these sets in
PL0(S).

Proposition 9.7.6. The intersection of Zγ with any of the canonical coordinate
systems X containing γ is convex. (In ML0 or PL0.)

Proof. It suffices to give the proof in ML0. First consider the case that γ is
a simple closed curve and X = Vτ , for some train track τ carrying γ. Pass to the

cylindrical covering space C of S with fundamental group generated by γ. The path
of γ on C is embedded in the train track τ̃ covering τ . From a “transverse” measure

m on τ̃ , construct corridors on C with a metric giving them the proper widths. 9.75
            

For any subinterval I of γ, let nxr(I) and nxl(I) be (respectively) the net right
hand exiting and the net left hand exiting in the corresponding to I; in computing

this, we weight entrances negatively. (We have chosen some orientation for γ). Let
i(I) be the initial width of I, and f(I) be the final width.

If the measure m comes from an element γ′, then γ′ ∈ Zγ if and only if there is no
“traffic” entering the corridor of γ on one side and exiting on the other. This implies

the inequalities

i(I) ≥ nxl(I)

and

i(I) ≥ nxr(I)

for all subintervals I.
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9.76

It also implies the equation

nxl(γ) = 0,

so that any traffic travelling once around the corridor returns to its inital position.
(Otherwise, this traffic would spiral around to the left or right, and be inexorably
forced off on the side opposite to its entrance.)

Conversely, if these inequalities hold, then there is some trajectory going clear
around the corridor and closing up. To see this, begin with any cross-section of
the corridor. Let x be the supremum of points whose trajectories exit on the right.
Follow the trajectory of x as far as possible around the corridor, always staying in
the corridor whenever there is a choice.

            

The trajectory can never exit on the left—otherwise some trajectory slightly lower
would be forced to enter on the right and exit on the left, or vice versa. Similarly, it
can’t exit on the right. Therefore it continues around until it closes up.
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9.77

Thus when γ is a simple closed curve, Zγ ∩ Vτ is defined by linear inequalities, so
it is convex.

Consider now the case X = Vτ and γ is connected but not a simple geodesic.
Then γ is associated with some subsurface Mγ ⊂ S with geodesic boundary defined
to be the minimal convex surface containing γ. The set Cγ is the set of laminations
not intersecting int (Mγ). It is convex in Vτ , since

Cγ =
⋂
{Zα|α is a simple closed curve ⊂ int (Mγ)}.

A general element γ′ of Zγ is a measure on γ ∪ γ′′, so Zγ consists of convex combina-
tions of ∆γ and Cγ : hence, it is convex.

If γ is not connected, then Zγ is convex since it is the intersection of {Zγi}, where
the γi are the components of γ.

The case X is a stereographic coordinate system follows immediately. When
X = V ∗τ , consider any essentially complete γ ∈ Vτ . From 9.7.5 it follows that V ∗τ is
linearly embedded in Sγ . (Or more directly, construct a train track (without bigons)
carrying τ∗; or, apply the preceding proof to bigon track τ∗.)

Remark. Note that when γ is a union of simple closed curves, Cγ in PL0(S) is
homeomorphic to PL0(S − γ), regarded as a complete surface with finite area—i.e., 9.78

Cγ is a sphere. When γ has no component which is a simple closed curve, Cγ is
convex. Topologically, it is the join of PL0(S −

⋃
Sγ) with the simplex of measures

on the boundary components of the Sγi , where the Sγi are subsurfaces associated
with the components γi of γ.

Now we are in a position to form an image of the set of unrealizable laminations
for ρπ1S. Let U+ ⊂ PL0 be the union of laminations containing a component of χ+

and define U− similarly, so that γ is unrealizable if and only if γ ∈ U+ ∪ U−. U+ is a
union of finitely many convex pieces, and it is contained in a subcomplex of PL0 of
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codimension at least one. It may be disjoint from U−, or it may intersect U− in an

interesting way.

Example. Let S be the twice punctured torus. From a random essentially com-

plete train track,
            

we compute that ML0 has dimension 4, so PL0 is homeomorphic to S3. For any

simple closed curve α on S, Cα is PL0(S − α),
            

9.79

where S −α is either a punctured torus union a (trivial) thrice punctured sphere, or

a 4-times punctured sphere. In either case, Cα is a circle, so Zα is a disk.

Here are some sketches of what U+ and U− can look like.
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Here is another example, where S is a surface of genus 2, and U+(S)∪U−(S) has
the homotopy type of a circle (although its closure is contractible):

            

9.80

In fact, U+ ∪U− is made up of convex sets Zγ −Cγ , with relations of inclusion as
diagrammed:
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The closures all contain the element α; hence the closure of the union is starlike:
            

9.9-1

9.9. Ergodicity of the geodesic flow

We will prove a theorem of Sullivan (1979): There is no §9.8

Theorem 9.9.1. Let Mn be a complete hyperbolic manifold (of not necessarily
finite volume). Then these four conditions are equivalent:

(a) The series ∑
γ∈π1Mn

exp
(
−(n− 1) d(x0, γx0)

)
diverges. (Here, x0 ∈ Hn is an arbitrary point, γx0 is the image of x0 under a
covering transformation, and d( , ) is hyperbolic distance).

(b) The geodesic flow is not dissipative. (A flow φt on a measure space (X,µ)
is dissipative if there exists a measurable set A ⊂ X and a T > 0 such that
µ(A ∩ φt(A)) = 0 for t > T , and X = ∪tφt(A).)

(c) The geodesic flow on T1(M) is recurrent. (A flow φt on a measure space (X,µ)
is recurrent when for every measure set A ⊂ X of positive measure and every
T > 0 there is a t ≥ T such that µ(A ∩ φt(A)) > 0.)

(d) The geodesic flow on T1(M) is ergodic.

Note that in the case M has finite volume, recurrence of the geodesic flow is
immediate (from the Poincaré recurrence lemma). The ergodicity of the geodesic
flow in this case was proved by Eberhard Hopf, in ??. The idea of (c) → (d) goes
back to Hopf, and has been developed more generally in the theory of Anosov flows
??. 9.9-2
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Corollary 9.9.2. If the geodesic flow is not ergodic, there is a non-constant
bounded superharmonic function on M .

Proof of 9.9.2. Consider the Green’s function g(x) =
∫∞
d(x,x0)

sinh1−nt dt for

hyperbolic space. (This is a harmonic function which blows up at x0.) By (a), the
series

∑
γ∈π1M

g ◦ γ converges to a function, invariant by γ, which projects to a
Green’s function G for M . The function f = arctanG (where arctan∞ = π/2 ) is a
bounded superharmonic function, since arctan is convex.

Remark. The convergence of the series (a) is actually equivalent to the existence
of a Green’s function on M , and also equivalent to the existence of a bounded super-
harmonic function. See (Ahlfors, Sario) for the case n = 2, and [ ] for the general
case.

Corollary 9.9.3. If Γ is a geometrically tame Kleinian group, the geodesic flow
on T1(Hn/Γ) is ergodic if and only if LΓ = S2.

Proof of 9.9.3. From 9.9.2 and 8.12.3.

Proof of 9.9.1. Sullivan’s proof of 9.9.1 makes use of the theory of Brownian
motion on Mn. This approach is conceptually simple, but takes a certain amount
of technical background (or faith). Our proof will be phrased directly in terms of
geodesics, but a basic underlying idea is that a geodesic behaves like a random
path: its future is “nearly” independent of its past. 9.9-2a

            

9.9-3

(d)→ (c). This is a general fact. If a flow φt is not recurrent, there is some set A
of positive measure such that only for t in some bounded interval is µ(A∩φt(A)) > 0.
Then for any subset B ⊂ A of small enough measure, ∪tφt(B) is an invariant subset
which is proper, since its intersection with A is proper.
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(c) → (b). Immediate.

(b) → (a). Let B be any ball in Hn, and consider its orbit ΓB where Γ = π1M .
For the series of (a) to diverge means precisely that the total apparent area of ΓG as
seen from a point x0 ∈ Hn, (measured with multiplicity) is infinite.

In general, the underlying space of a flow is decomposed into two measurable
parts, X = D ∪R, where φt is dissipative on D (the union of all subsets of X which
eventually do not return) and recurrent on R. The reader may check this elementary
fact. If the recurrent part of the geodesic flow is non-empty, there is some ball B in
Mn such that a set of positive measure of tangent vectors to points of B give rise to
geodesics that intersect B infinitely often. This clearly implies that the series of (a)
diverges.

The idea of the reverse implication (a) → (b) is this: if the geodesic flow is
dissipative there are points x0 such that a positive proportion of the visual sphere
is not covered infinitely often by images of some ball. Then for each “group” of
geodesics that return to B, a definite proportion must eventually escape ΓB, because
future and past are nearly independent. The series of (a) can be regrouped as a
geometric progression, so it converges. We now make this more precise.

Recall that the term “visual sphere” at x0 is a synonym to the “set of rays”
emanating from x0. It has a metric and a measure obtained from its identification
with the unit sphere in the tangent space at x0. 9.9-4

Let x0 ∈Mn be any point and B ⊂Mn any ball. If a positive proportion of the
rays emanating from x0 pass infinitely often through B, then for a slightly larger ball
B′, a definite proportion of the rays emanating from any point x ∈ Mn spend an
infinite amount of time in B′, since the rays through x are parallel to rays through
x0. Consequently, a subset of T1(B′) of positive measure consists of vectors whose
geodesics spend an infinite total time in T1(B′); by the Poincaré recurrence lemma,
the set of such vectors is a recurrent set for the geodesic flow. (b) holds so (a)→ (b)
is valid in this case. To prove (a) → (b), it remains to consider the case that almost
every ray from x0 eventually escapes B; we will prove that (a) fails, i.e., the series of
(a) converges.

Replace B by a slightly smaller ball. Now almost every ray from almost every
point x ∈M eventually escapes the ball. Equivalently, we have a ball B ⊂ Hn such
that for every point x ∈ Hn, almost no geodesic through x intersects ΓB, or even
Γ(Nε(B)), more than a finite number of times.

Let x0 be the center of B and let α be the infimum, for y ∈ Hn, of the diameter
of the set of rays from x0 which are parallel to rays from y which intersect B. This
infimum is positive, and very rapidly approached as y moves away from x0.
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9.9-5

Let R be large enough so that for every ball of diameter greater than α in the
visual sphere at x0, at most (say) half of the rays in this ball intersect ΓN∈(B) at a
distance greater than R from x0. R should also be reasonably large in absolute terms
and in comparison to the diameter of B.

Let x0 be the center of B. Choose a subset Γ′ ⊂ Γ of elements such that: (i) for
every γ ∈ Γ there is a γ′ ∈ Γ′ with d(γ′x0, γx0) < R. (ii) For any γ1 and γ2 in Γ′,
d(γ1x0, γ2x0) ≥ R.

Any subset of Γ maximal with respect to (ii) satisfies (i).
We will show that

∑
γ′∈Γ′ exp(−(n − 1) d(x0, γ

′x0)) converges. Since for any γ′

there are a bounded number of elements γ ∈ Γ so that d(γx0, γ
′x0) < R, this will

imply that the series of (a) converges.
Let < be the partial ordering on the elements of Γ′ generated by the relation

γ1 < γ2 when γ2B eclipses γ1B (partially or totally) as viewed from x0; extend < to
be transitive.

Let us denote the image of γB in the visual sphere of x0 by Bγ . Note that when
γ′ < γ, the ratio diam(Bγ′)/ diam(Bγ) is fairly small, less than 1/10, say. Therefore
∪γ′<γBγ′ is contained in a ball concentric with Bγ of radius 10/9 that of Bγ.

Choose a maximal independent subset ∆1 ⊂ Γ′ (this means there is no rela-
tion δ1 < δ2 for any δ1, δ2 ∈ ∆1 ). Do this by successively adjoining any γ whose
Bγ has largest size among elements not less than any previously chosen member.
Note that area (∪δ∈∆Bδ)/ area(∪γ∈Γ′Bγ) is greater than some definite (a priori) con-
stant: (9/10)n−1 in our example. Inductively define Γ′0 = Γ′, γ′i+1 = Γ′i − ∆i+1 and
define ∆i+1 ⊂ Γi similarly to ∆1. Then Γ′ = ∪∞i=1∆i. 9.9-6

For any γ ∈ Γ′, we can compare the set Bγ of rays through x0 which intersect
γ(B) to the set Cγ of parallel rays through γX0.

Any ray of Bγ which re-enters Γ′(B) after passing through γ′(B), is within ε of
the parallel ray of Cγ by that time. At most half of the rays of Cγ ever enter Nε(Γ

′B).
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The distortion between the visual measure of Bγ and that of Cγ is modest, so we can
conclude that the set of reentering rays, Bγ ∩

⋃
γ′<γ Bγ′ , has measure less than 2/3

the measure of Bγ .

We conclude that, for each i,

area
( ⋃
γ∈Γ′i+1

Bγ

)
− area

(⋃
γ∈Γ′i

Bγ

)
≥ 1/3 area

( ⋃
δ∈∆i+1

Bδ

)
≥ 1/3 · (9/10)n−1 area

(⋃
γ∈Γ′i

Bγ

)
.

The sequence {area(
⋃
γ∈Γ′i

Bγ)} decreases geometrically. This sequence dominates

the terms of the series
∑

i area∪δ∈∆iBδ =
∑

γ∈Γ′ area(Bγ), so the latter converges,
which completes the proof of (a) → (b). 9.9-7

(b) → (c). Suppose R ⊂ T1(Mn) is any recurrent set of positive measure for the
geodesic flow φt. Let B be a ball such that R ∩ T1(B) has positive measure. Almost
every forward geodesic of a vector in R spends an infinite amount of time in B. Let
A ⊂ T1(B) consist of all vectors whose forward geodesics spend an infinite time in B
and let ψt, t ≥ 0, be the measurable flow on A induced from φt which takes a point
leaving A immediately back to its next return to A.

Since ψt is measure preserving, almost every point of A is in the image of ψt for
all t and an inverse flow ψ−t is defined on almost all of A, so the definition of A is
unchanged under reversal of time. Every geodesic parallel in either direction to a
geodesic in A is also in A; it follows that A = T1(B). By the Poincaré recurrence
lemma, ψt is recurrent, hence φt is also recurrent.

(c)→ (d). It is convenient to prove this in the equivalent form, that if the action
of Γ on Sn−1

∞ × Sn−1
∞ is recurrent, it is ergodic. “Recurrent” in this context means

that for any set A ⊂ Sn−1×Sn−1 of positive measure, there are an infinite number of
elements γ ∈ Γ such that µ(γA∩A) > 0. Let I ⊂ Sn−1×Sn−1 be any measurable set
invariant by Γ. Let −B1 and B2 ⊂ Sn−1 be small balls. Let us consider what I must
look like near a general point x = (x1, x2) ∈ B1 × B2. If γ is a “large” element of Γ
such that γx is near x, then the preimage of γ of a product of small ε-ball around γx1

and γx2 is one of two types: it is a thin neighborhood of one of the factors, (x1×B2)
or (B1 × x2). (γ must be a translation in one direction or the other along an axis
from approximately x1 to approximately x2.) Since Γ is recurrent, almost every point
x ∈ B1 × B2 is the preimage of elements γ of both types, of an infinite number of 9.9-8
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9. ALGEBRAIC CONVERGENCE

points where I has density 0 or 1. Define

f(x1) =

∫
B2

χI(x1, x2) dx2,

where χI is the characteristic function of I, for x1 ∈ B1 (using a probability measure
on B2 ). By the above, for almost every x1 there are arbitrarily small intervals
around x1 such that the average of f in that interval is either 0 or 1. Therefore f is
a characteristic function, so I ∩B1×B2 is of the form S×B2 (up to a set of measure
zero) for some set S ⊂ B1.

Similarly, I is of the form B1 ×R, so I is either ∅ × ∅ or B1 ×B2 (up to a set of
measure zero).
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