
6. GROMOV’S INVARIANT AND THE VOLUME OF A HYPERBOLIC MANIFOLD

of π1(M2) on π1(M4) by conjugation. π1(M4) has a trivial center, so in other words
the action of π1(M4) on itself is effective. Then for every α ∈ π1(M2), since some
power of αk is in π1(M4), α must conjugate π1(M4) non-trivially. Thus π1(M2) is
isomorphic to a group of automorphisms of π1(M4), so by Mostow’s theorem it is a
discrete group of isometries of Hn.

In the three-dimensional case, it seems likely that M1 would actually be hyper-
bolic. Waldhausen proved that two Haken manifolds which are homotopy equivalent
are homeomorphic, so this would follow whenever M1 is Haken.

There are some sorts of properties of three-manifolds which do not change under
passage to a finite-sheeted cover. For this reason (and for its own sake) it would be
interesting to have a better understanding of the commensurability relation among
three-manifolds. This is difficult to approach from a purely topological point of
view, but there is a great deal of information about commensurability given by a
hyperbolic structure. For instance, in the case of a complete non-compact hyperbolic 6.31

three-manifold M of finite volume, each cusp gives a canonical Euclidean structure
on a torus, well-defined up to similarity. A convenient invariant for this structure
is obtained by arranging M so that the cusp is the point at ∞ in the upper half
space model and one generator of the fundamental group of the cusp is a translation
z 7→ z + 1. A second generator is then z 7→ z + α. The set of complex numbers
α1 . . . αk corresponding to various cusps is an invariant of the commensurability class
of M well-defined up to the equivalence relation

αi ∼
nαi +m

pαi + q
,

where

n,m, pq ∈ Z,
∣∣∣∣n m
p q

∣∣∣∣ 6= 0.

(n,m, p and q depend on i).

142 Thurston — The Geometry and Topology of 3-Manifolds



6.7. COMMENSURABILITY
            

6.32

In particular, if α ∼ β, then they generate the same fields Q(α) = Q (β).
Note that these invariants αi are always algebraic numbers, in view of

Proposition 6.7.4. If Γ is a discrete subgroup of PSL(2, C ) such that H3/Γ has
finite volume, then Γ is conjugate to a group of matrices whose entries are algebraic.

Proof. This is another easy consequence of Mostow’s theorem. Conjugate Γ so
that some arbitrary element is a diagonal matrix[

µ 0
0 µ−1

]
and some other element is upper triangular,[

λ x
0 λ−1

]
.

The component of Γ in the algebraic variety of representations of Γ having this form
is 0-dimensional, by Mostow’s theorem, so all entries are algebraic numbers.

One can ask the more subtle question, whether all entries can be made algebraic
integers. Hyman Bass has proved the following remarkable result regarding this
question:

Theorem 6.7.5 (Bass). Let M be a complete hyperbolic three-manifold of finite
volume. Then either π1(M) is conjugate to a subgroup of PSL(2,O), where O is
the ring of algebraic integers, or M contains a closed incompressible surface (not
homotopic to a cusp).
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The proof is out of place here, so we omit it. See Bass. As an example, very few
knot complements seem to contain non-trivial closed incompressible surfaces. The
property that a finitely generated group Γ is conjugate to a subgroup of PSL(2,O)
is equivalent to the property that the additive group of matrices generated by Γ 6.33

is finitely generated. It is also equivalent to the property that the trace of every
element of Γ is an algebraic integer. It is easy to see from this that every group
commensurable with a subgroup of PSL(2,O) is itself conjugate to a subgroup of
PSL(2,O). (If Tr γn = a is an algebraic integer, then an eigenvalue λ of γ satisfies
λ2n − aλn + 1 = 0. Hence λ, λ−1 and Tr γ = λ+ λ−1 are algebraic integers).

If two manifolds are commensurable, then their volumes have a rational ratio.
We shall see examples in the next section of incommensurable manifolds with equal
volume.

Questions 6.7.6. Does every commensurability class of discrete subgroups of
PSL(2, C ) have a finite collection of maximal groups (up to isomorphism)?

Is the set of volumes of three-manifolds in a given commensurability class a dis-
crete set, consisting of multiples of some number V0?

6.8. Some Examples

Example 6.8.1. Consider the k-link chain Ck pictured below:
            

6.34

If each link of the chain is spanned by a disk in the simplest way, the complement of
the resulting complex is an open solid torus.
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S3 − Ck is obtained from a solid torus, with the cell division below on its boundary,
by deleting the vertices and identifying.

            

6.35

To construct a hyperbolic structure for S3 − Ck, cut the solid torus into two drums.
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Let P be a regular k-gon in H3 with all vertices on S2
∞. If P ′ is a copy of P obtained

by displacing P along the perpendicular to P through its center, then P ′ and P can
be joined to obtain a regular hyperbolic drum. The height of P ′ must be adjusted

so that the reflection through the diagonal of a rectangular side of the drum is an
isometry of the drum. If we subdivide the drum into 2k pieces as shown,

            

6.36

the condition is that there are horospheres about the ideal vertices tangent to three
faces. Placing the ideal vertex at ∞ in upper half-space, we have a figure bounded
by three vertical Euclidean planes and three Euclidean hemispheres of equal radius r.

Here is a view from above:
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From this figure, we can compute the dihedral angles α and β of the drum to be

α = arc cos

(
cosπ/k√

2

)
, β = π − 2α.

Two copies of the drum with these angles can now be glued together to give a hyper-
bolic structure on S3−Ck. (Note that the total angle around an edge is 4α+2β = 2π.
Since the horospheres about vertices are matched up by the gluing maps, we obtain
a complete hyperbolic manifold).

From Milnor’s formula (6), p. 7.15, for the volume, we can compute some values.
6.37

k v(S3 − Ck) v(S3 − Ck)/k
2 0 0 (Seifert fiber space)
3 5.33349 1.77782 ∼ PSL(2,O7)
4 10.14942 2.53735 ∼ PSL(2,O3)
5 14.60306 2.92061
6 18.83169 3.13861
7 22.91609 3.27373

10 34.691601 3.4691601
50 182.579859 3.65159719

200 732.673784 3.66336892
1000 3663.84264 3.66384264
8000 29310.8990 3.66386238
∞ ∞ 3.66386238 Whitehead link
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Note that the quotient space (S3 − Ck)/Zk by the rotational symmetry of Ck is
obtained by generalized Dehn surgery on the White head link W , so the limit of 6.38

v(Ck)/k as k →∞ is the volume of S3 −W .

Note also that whenever k divides l, then there is a degree l
k

map from S3 − Cl
to S3 − Ck. This implies that v(S3 − Cl)/l > v(S3 − Ck)/k. In fact, from the table
it is clear that these numbers are strictly increasing with k.

The cases k = 3 and 4 have particular interest.

Example 6.8.2. The volume of S3 − C3 per cusp has a particularly low value
(1.7778). The holonomy of the hyperbolic structure can be described by

            

H(A) =

[
1 α
0 1

]
H(B) =

[
1 + α α
−α 1− α

]
H(C) =

[
1 0
−α 1

]
where α = −1+

√
−7

2
. Thus π1(X3 − C3) is a subgroup of PSL(2,O7) where Od is the

ring of integers in Q
√
−d. See §7.4. Referring to Humbert’s formula 7.4.1, we find

v(H3/PSL(2,O7) = .8889149 . . . , so π1(S3 − C3) has index 6 in this group.

Example 6.8.3. When k = 4, the rectangular-sided drum becomes a cube with
all dihedral angles 60◦. This cube may be subdivided into five regular ideal tetrahedra:

6.39
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Thus S3−C4 is commensurable with S3− figure eight knot, since π1(S3−C4) preserves
a tiling of H3 by regular ideal tetrahedra.

            

commensurable with PSL(2,O3)

S3−Ck is homeomorphic to many other link complements, since we can cut along
any disk spanning a component of Ck, twist some integer number of times and glue
back to obtain a link with a complement homeomorphic to that of Ck. Further-
more, if we glue back with a half-integer twist, we obtain a link whose complement
is hyperbolic with the same volume as S3 − Ck. This follows since twice-punctured
spanning disks are totally geodesic thrice-punctured spheres in the hyperbolic struc-
ture of S3−Ck. The thrice-punctured sphere has a unique hyperbolic structure, and
all six isotopy classes of diffeomorphisms are represented by isometries. 6.40

Using such operations, we obtain these examples for instance:

Example 6.8.4.
            

commensurable with C3
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The second link has a map to the figure-eight knot obtained by erasing a compo-
nent of the link. Thus, by 6.5.6, we have

v(S3 − C3) = 5.33340 . . . > 2.02988 = v(S3 − figure eight knot).

These links are commensurable with C3, since they give rise to identical tilings of
H3 by drums. As another example, the links below are commensurable with C10:

Example 6.8.5.
            

k = 5 Commensurable with C10 v = 34.69616

6.41

The last three links are obtained from the first by cutting along 5-times punctured
disks, twisting, and gluing back. Since this gluing map is a diffeomorphism of the
surface which extends to the three-manifold, it must come from an isometry of a
6-punctured sphere in the hyperbolic structure. (In fact, this surface comes from the
top of a 10-sided drum).

The compex modulus associated with a cusp of Cn is

1

2

(
1 +

√
1 + sin2 π

n

cos2 π
n

i

)
.

Clearly we have an infinite family of incommensurable examples.

By passing to the limit k →∞ and dividing by Z, we get these links commensu-
rable with S3 −W and S3 −B, for instance:

Example 6.8.6.            
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Many other chains, with different amounts of twist, also have hyperbolic struc-
tures. They all are obtained, topologically, by identifying faces of a tiling of the
boundary of a solid torus by rectangles. Here is another infinite family D2k(≥ 3)
which is easy to compute: 6.42

Example 6.8.7.
            

Hyperbolic structures can be realized by subdividing the solid torus into 4 drums
with triangular sides:
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6.43

Regular drums with all dihedral angles 90◦ can be glued together to give S3 − Dk.
By methods similar to Milnor’s in 7.3, the formula for the volume is computed to be

v(S3 −D2k) = 8k
(
µ(π

4
+ π

2k
) + µ(π

4
− π

2k
)
)
.

Thus we have the values

k v(S3 −D2k) v(S3 −D2k)/(2k)
3 14.655495 2.44257
4 24.09218 3.01152
5 32.55154 3.25515
6 40.59766 3.38314

100 732.750 3.66288
1000 7327.705 3.66386
∞ ∞ 3.66386

The cases k = 3 and k = 4 have algebraic significance. They are commensu-
rable with PSL(2,O1) nad PSL(2,O2), respectively. When k = 3, the drum is an
octahedron and v(S3 −D2k) = 4v(S3 −W ).

Note that the volume of (S3−D12) is 20 times the volume of the figure-eight knot
complement. 6.44

Two copies of the triangular-sided drum form this figure:
            

The faces may be glued in other patterns to obtain link complements. For instance,
if k is even we can first identify

            

the triangular faces, to obtain a ball minus certain arcs and curves on the boundary.
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6.45

If we double this figure, we obtain a complete hyperbolic structure for the com-
plement of this link, El:

Example 6.8.8.
            

Alternatively, we can identify the boundary of the ball to obtain

Example 6.8.9.
            

In these examples, note that the rectangular faces of the doubled drums
            

6.46

have complete symmetry, and some of the link complements are obtained by gluing
maps which interchange the diagonals, while others preserve them. These links are
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generally commensurable even when they have the same volume; this can be proven
by computing the moduli of the cusps.

There are many variations. Two copies of the drum with 8 triangular faces, glued
together, give a cube with its corners chopped off. The 4-sided faces can be glued,
to obtain the ball minus these arcs and curves:            

The two faces of the ball may be glued together (isometrically) to give any of these
link complements: 6.47

Example 6.8.10.
            

v = 12.04692 = 1
2v(S3 −D8) > v(C3) (commensurable with PSL(2,Z

√
−2))

The sequence of link complements, Fn below can also be given hyperbolic struc-
tures obtained from a third kind of drum:

Example 6.8.11.
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6.48

The regular drum is determined by its angles α and β = π − α. Any pair of
angles works to give a hyperbolic structure; one verifies that when the angle α =
arc cos(cos π

2n
− 1

2
), the hyperbolic structure is complete. The case n = 1 gives a

trivial knot. In the case n = 2, the drums degenerate into simplices with 60◦ angles,
and we obtain once more the hyperbolic structure on F2 = figure eight knot. When
n = 3, the angles are 90◦, the drums become octahedra and we obtain F3 = B.
Passing to the limit n = ∞, and dividing by Z, we obtain the following link, whose
complement is commensurable with S3 − figure eight knot:

Example 6.8.12.             

v = 4.05977 . . .

With these examples, many maps between link complements may be constructed.
The reader should experiment for himself. One gets a feeling that volume is a very
good measure of the complexity of a link complement, and that the ordinal structure
is really inherent in three-manifolds.

Thurston — The Geometry and Topology of 3-Manifolds 155


