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CHAPTER 6

Gromov’s invariant and the volume of a hyperbolic manifold

6.1

6.1. Gromov’s invariant

Let X be any topological space. Denote the real singular chain complex of X by
C∗(k). (Recall that Ck(X) is the vector space with a basis consisting of all continuous
maps of the standard simplex ∆k into X.) Any k-chain c can be written uniquely as
a linear combination of the basis elements. Define the norm ‖c‖ of c to be the sum
of the absolute values of its coefficients,

6.1.1. ‖c‖ =
∑
|ai| where c =

∑
aiσi, σi : ∆k → X.

Gromov’s norm on the real singular homology (really it is only a pseudo-norm) is
obtained from this norm on cycles by passing to homology: if a ∈ Hk(X;R) is any
homology class, then the norm of α is defined to be the infimum of the norms of
cycles representing α, Labelled this 6.1.2.def

Definition 6.1.2 (First definition).

‖α‖ = inf {‖z‖ | z is a singular cycle representing α}.

It is immediate that

‖α+ β‖ ≤ ‖α‖+ ‖β‖
and for λ ∈ R,

‖λα‖ ≤ |λ| ‖α‖.
If f : X → Y is any continuous map, it is also immediate that 6.2

6.1.2. ‖f∗α‖ ≤ ‖α‖.

In fact, for any cycle
∑
aiσi representing α, the cycle

∑
aif ◦ σi represents f∗α,

and ‖
∑
aif ◦ σi‖ =

∑
|ai| ≤ ‖

∑
aiσi‖. (It may happen that f ◦ σi = f ◦ σj ; even

when σi 6= σj .) Thus ‖f∗α‖ ≤ inf ‖aif ◦ σi‖ ≤ ‖α‖.
In particular, the norm of the fundamental class of a closed oriented manifold M

gives a characteristic number ofM , Gromov’s invariant of M , satisfying the inequality
that for any map f : M1 →M2,

6.1.3. ‖ [M1] ‖ ≥ | deg f | ‖ [M2] ‖.
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6. GROMOV’S INVARIANT AND THE VOLUME OF A HYPERBOLIC MANIFOLD

What is not immediate from the definition is the existence of any non-trivial
examples where ‖ [M ] ‖ 6= 0.

Example. The n-sphere n ≥ 1 admits maps f : Sn → Sn of degree 2 (and
higher). As a consequence of 6.1.2 ‖ [Sn] ‖ = 0. More explicitly, one may picture a
sequence {zi} representing the fundamental class of S1, where zi is ( l

i
)σi and σi wraps

a 1-simplex i times around S1. Since ‖zi‖ = 1
i
, ‖ [S1] ‖ = 0.

As a trivial example, ‖ [S0] ‖ = 2.
Consider now the case of a complete hyperbolic manifold Mn. Any k + 1 points

v0, . . . , vk in M̃n = Hn determine a straight k-simplex σv0,... ,vk : ∆k → Hn, whose
image is the convex hull of v0, . . . , vk. There are various ways to define canonical
parametrizations for σv0,... ,vk ; here is an explicit one. Consider the quadratic form 6.3

model for Hn (§2.5). In this model, v0, . . . , vk become points in Rn+1 , so they deter-
mine an affine simplex α. [In barycentric coordinates, α(t0, . . . , tk) =

∑
tivi. This

parametrization is natural with respect to affine maps of Rn+1 ]. The central projec-
tion from O of α back to one sheet of hyperboloid Q = x2

1 + · · ·+x2
n−x2

n+1 = −1 gives
a parametrized straight simplex σv0,... ,vk in Hn, natural with respect to isometries of
Hn.

            

Any singular simplex τ : ∆k → M can be lifted to a singular simplex τ̃ in
M̃ = Hn, since ∆k is simply connected. Let straight (τ̃) be the straight simplex with
the same vertices as τ̃ and let straight(τ) be the projection of τ̃ back to M . Since the
straightening operation is natural, straight(τ) does not depend on the lift τ̃ . Straight
extends linearly to a chain map

straight : C∗(M)→ C∗(M),

chain homotopic to the identity. (The chain homotopy is constructed from a canon-
ical homotopy of each simplex τ to straight(τ).) It is clear that for any chain c,
‖ straight (c)‖ ≤ ‖c‖. Hence, in the computation of the norm of a homology class in
M , it suffices to consider only straight simplices. 6.3

Proposition 6.1.4. There is a finite supremum vk to the k-dimensional volume
of a straight k-simplex in hyperbolic space Hn provided k 6= 1.
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6.1. GROMOV’S INVARIANT

Proof. It suffices to consider ideal simplices with all vertices on S∞, since any
finite simplex fits inside one of these. For k = 2, there is only one ideal simplex up to
isometry. We have seen that 2 copies of the ideal triangle fit inside a compact surface
(§3.9). Thus it has finite volume, which equals π by the Gauss-Bonnet theorem.
When k = 3, there is an efficient formula for the computation of the volume of an
ideal 3-simplex; see Milnor’s discussion of volumes in chapter 7. The volume of such
simplices attains its unique maximum at the regular ideal simplex, which has all
angles equal to 60◦. Thus we have the values

6.1.5.
v2 = 3.1415926 . . . = π

v3 = 1.0149416 . . .

It is conjectured that in general, vk is the volume of the regular ideal k-simplex; if so,
Milnor has computations for more values, and a good asymptotic formula as k →∞.
In lieu of a proof of this conjecture, an upper bound can be obtained for vk from the
inductive estimate

6.1.6. vk <
vk−1

k − 1
.

To prove this, consider any ideal k-simplex σ in Hk. Arrange σ so that one of its
vertices is the point at ∞ in the upper half-space model, so that σ looks like a
triangular chimney lying above a k − 1 face σ0 of σ. 6.5

            

Let dW k be the Euclidean volume element, so hyperbolic volume is dV k =
( 1
xk

)kdW k. Let τ denote the projection of σ0 to En−1, and let h(x) denote the
Euclidean height of σ0 above the point x ∈ τ . The volume of σ is

v(σ) =

∫
τ

∫ ∞
h

t−k dt dW k−1
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6. GROMOV’S INVARIANT AND THE VOLUME OF A HYPERBOLIC MANIFOLD

(where dW k−1 is the Euclidean k − 1 volume element for τ). Integrating, we obtain

(k − 1) v(σ) =

∫
τ

h−(k−1) dW k−1.

The volume of σ0 is obtained by a similar integral, where dW k−1 is replaced by
the Euclidean volume element for σ, which is never smaller than dW k−1. We have
(k − 1)v(σ) < v(σ0) ≤ vk−1.

We are now ready to find non-trivial examples for Gromov’s invariant:

Corollary 6.1.7. Every closed oriented hyperbolic manifold Mn of dimension
n > 1 satisfies the inequality

‖ [M ] ‖ ≥ v(M)

vn
.

Proof. Let Ω be the hyperbolic volume form for M , so that
∫
M

Ω = v(M). If
z =

∑
ziσi is any straight cycle representing [M ], then 6.6

v(M) =

∫
M

Ω =
∑

zi

∫
∆n

σ∗i Ω ≤
∑
|zi| vn.

Dividing by vn, we obtain ‖z‖ ≥ v(M)/vn. The infimum over all such z gives 6.1.7

A similar proof shows that the norm of element 0 6= α ∈ Hk(M,R) where k 6= 1
is non-zero. Instead of Ω, use an k-form ω representing some multiple λα such that
ω has Riemannian norm ≤ 1 at each point of M . (In fact, ω need only satisfy the
inequality ω(V ) ≤ 1 where V is a simple k-vector of Riemannian norm 1.) Then the
inequality ‖α‖ ≥ λ/vk is obtained.

Intuitively, Gromov’s norm measures the efficiency with which multiples of a
homology class can be represented by simplices. A complicated homology class needs
many simplices.

Gromov proved the remarkable theorem that the inequality of 6.1.7 is actually
equality. Instead of proving this, we will take the alternate approach to Gromov’s
theorem developed in [Milnor and Thurston, “Characteristic numbers for three-
manifolds”], of changing the definition of ‖ ‖ to one which is technically easier to
work with. It can be shown that past and future definitions are equivalent. However,
we have no further use for the first definition, 6.1.2, so henceforth we shall simply
abandon it.

For any manifold M , let C1(∆k,M) denote the space of maps of ∆k to M , with
the C1 topology. We define a new notion of chains, where a k-chain is a Borel
measure µ on C1(∆K ,M) with compact support and bounded total variation. [The
total variation of a measure µ is ‖µ‖ = sup{

∫
f dµ | |f | ≤ 1}. Alternately, µ can be

decomposed into a positive and negative part, µ = µ+ − µ− where µ+ and µ− are 6.7
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6.1. GROMOV’S INVARIANT

positive. Then ‖µ‖ =
∫
dµ+ +

∫
dµ−]. Let the group of k-chains be denoted Ck(M).

There is a map ∂ : Ck(M)→ Ck−1(M), defined in an obvious way. It is not difficult to
prove that the homology obtained by using these chains is the standard homology for
M ; see [Milnor and Thurston, “Characteristic numbers for three-manifolds”] for more
details. (Note that integration of a k-form over an element of Ck(M) is defined; this
gives a map from C∗(M) to currents on M . Some condition such as compact support
for µ is necessary; otherwise one would have pathological cycles such as

∑
(1
i
)2σi,

where σi wraps ∆1 i times around S1. The measure has total variation
∑

(1
i
)2 <∞,

yet the cycle would seem to represent the infinite multiple
∑

(1
i
)[S1] of [S1].)

Definition 6.1.8 (Second definition). Let α ∈ Hk(M ;R), where M is a mani-
fold. Gromov’s norm ‖α‖ is defined to be

‖α‖ = inf{‖u‖ |µ ∈ Ck(M) represents α}.
Theorem 6.2 (Gromov). Let Mn be any closed oriented hyperbolic manifold.

Then

‖ [M ] ‖ =
v(Mn)

vn
.

Proof. The proof of corollary 6.1.7 works equally well with the new definition
as with the old. The point is that the straightening operation is completely uniform,
so it works with measure-cycles. What remains is to prove that ‖ [M ] ‖ ≤ v(M)/vn,
or in other words, the fundamental cycle of M can be represented efficiently by a
cycle using simplices which have (on the average) nearly maximal volume. 6.8

Let σ be any singular k-simplex in Hn. A chain smearM(σ) ∈ Ck(M) can
be constructed, which is a measure supported on all isometric maps of σ into M ,
weighted uniformly. With more notation, let h denote Haar measure on the group
of orientation-preserving isometries of Hn, Isom+(Hn). Let h be normalized so that
the measure of the set of isometries taking a point x ∈ Hn to a region R ⊂ Hn is
the volume of R. Haar measure on Isom+(Hn) is invariant under both right and left
multiplication, so it descends to a measure (also denoted h) on the quotient space
P (M) = π1M\ Isom+(Hn).

There is a map from P (M) to C
1(∆k,M), which associates to a coset π1Mϕ the

singular simplex p◦ϕ◦σ, where p : Hn →M is the covering projection. The measure
h pushes forward to give a chain smearM(σ) ∈ Ck(M). Since h is invariant on both
sides, smearM(σ) depends only on the isometry class of σ. Smearing extends linearly
to Ck(H

n). Furthermore, smearM ∂c = ∂ smearM c.
Let σ now be any straight simplex in Hn, and σ− a reflected copy of σ. Then

1
2

smearM(σ − σ−)) is a cycle, since the faces of σ and σ− cancel out in pairs, up to
isometries. We have

‖1
2

smearM (σ − σ−)‖ = v(M).
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6. GROMOV’S INVARIANT AND THE VOLUME OF A HYPERBOLIC MANIFOLD

The homology class of this cycle can be computed by integration of the hyperbolic
form Ω from M . The integral over each copy of σ is v(σ), so the total integral is
v(M)v(σ). Thus, the cycle represents

[1
2

smear (σ − σ−)] = v(σ)[M ]

so that 6.9

‖v(σ)[M ] ‖ ≤ v(M).

Dividing by v(σ) and taking the infimum over σ, we obtain 6.2.

Corollary 6.2.1. If f : M1 →M2 is any map between closed oriented hyperbolic
n-manifolds, then

v(M1) ≥ | deg f |v(M2).

Gromov’s theorem can be generalized to any (G,X)-manifold, where G acts tran-
sitively on X with compact isotropy groups.

To do this, choose an invariant Riemannian metric for X and normalize Haar
measure on G as before. The smearing operation works equally well, so that one has
a chain map

smearM : Ck(X)→ Ck(M).

In fact, if N is a second (G,X)-manifold, one has a chain map

smearN,M : Ck(N)→ Ck(M),

defined first on simplices in N via a lift to X, and then extended linearly to all of
Ck(N). If z is any cycle representing [N ], then smearN,M(z) represents

(v(N)/v(M))[M ].

This gives the inequality

‖ [N ] ‖
v(N)

≥ ‖ [M ] ‖
v(M)

.

Interchanging M and N , we obtain the reverse inequality, so we have proved the
following result:

Theorem 6.2.2. For any pair (G,X), where G acts transitively on X with com-
pact isotropy groups and for any invariant volume form on X, there is a constant C 6.10

such that every closed oriented (G,X)-manifold M satisfies

‖ [M ] ‖ = Cv(M),

(where v(M) is the volume of M).
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6.3. GROMOV’S PROOF OF MOSTOW’S THEOREM

This line may be pursued still further. In a hyperbolic manifold a smeared k-cycle
is homologically trivial except in dimension k = 0 or k = n, but this is not generally
true for other (G,X)-manifolds when G does not act transitively on the frame bundle
ofX. The invariant cohomologyH∗G(X) is defined to be the cohomology of the cochain
complex of differential forms on X invariant by G. If α is any invariant cohomology
class for X, it defines a cohomology class αM on any (G,X)-manifold M . Let PD(γ)
denote the Poincaré dual of a cohomology class γ.

Theorem 6.2.3. There is a norm ‖ ‖ in H∗G(X) such that for any closed oriented
(G,X)-manifold M , ∥∥PD(αm)‖ = v(M)‖α‖.

Proof. It is an exercise to show that the map

smearM,M : H∗(M)→ H∗(M)

is a retraction of the homology of M to the Poincaré dual of the image in M of
H∗G(X). The rest of the proof is another exercise.

In these variations, 6.2.2 and 6.2.3, on Gromov’s theorem, there does not seem
to be any general relation between the proportionality constants and the maximal 6.11

volume of simplices. However, the inequality 6.1.7 readily generalizes to any case
when X possesses and invariant Riemannian metric of non-positive curvature.

6.3. Gromov’s proof of Mostow’s Theorem

Gromov gave a very quick proof of Mostow’s theorem for hyperbolic three-manifolds,
based on 6.2. The proof would work for hyperbolic n-manifolds if it were known that
the regular ideal n-simplex were the unique simplex of maximal volume. The proof This is now known to

be true.goes as follows.

Lemma 6.3.1. If M1 and M2 are homotopy equivalent, closed, oriented hyperbolic
manifolds, then v(M1) = v(M2).

Proof. This follows immediately by applying 6.2 to the homotopy equivalence
M1 ↔M2.

Let f1 : M1 → M2 be a homotopy equivalence and let f̃1 : M̃1 → M̃2 be a lift of
f1. From 5.9.5 we know that f̃1 extends continuously to the sphere Sn−1

∞ .

Lemma 6.3.2. If n = 3, f̃1 takes every 4-tuple of vertices of a positively oriented
regular ideal simplex to the vertices of a positively oriented regular ideal simplex.
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Proof. Suppose the contrary. Then there is a regular ideal simplex σ such that
the volume of the simplex straight(f̃1σ) spanned by the image of its vertices is v3− ε,
with ε > 0. There are neighborhoods of the vertices of σ in the disk such that for any
simplex σ′ with vertices in these neighborhoods, v

(
straight(f̃1σ

′)
)
≤ v3 − ε/2. Then

for every finite simplex σ′0 very near to σ, this means that a definite Haar measure 6.12

of the isometric copies σ′ of σ′0 near σ′ have v
(
straight(f̃1σ

′
0)
)
< v3 − ε/2. Such a

simplex σ′0 can be found with volume arbitrarily near v3. But then the “total volume”
of the cycle z = 1

2
smear(σ′0 − σ′0−) strictly exceeds the total volume of straight(f∗z),

contradicting 6.3.1.

To complete the proof of Mostow’s theorem in dimension 3, consider any ideal
regular simplex σ together with all images of σ coming from repeated reflections in
the faces of σ. The set of vertices of all these images of σ is a dense subset of S2

∞.
Once f̃1 is known on three of the vertices of σ, it is determined on this dense set of
points by 6.3.2, so f̃1 must be a fractional linear transformation of S2

∞, conjugating
the action of π1M1 to the action of π1M2. This completes Gromov’s proof of Mostow’s
theorem.

In this proof, the fact that f1 is a homotopy equivalence was used to show (a) that

v(M1) = v(M2) and (b) that f̃1 extends to a map of S2
∞. With more effort, the proof

can be made to work with only assumption (a):

Theorem 6.4 (Strict version of Gromov’s theorem). Let f : M1 → M2 be any
map of degree 6= 0 between closed oriented hyperbolic three-manifolds such that Gro-
mov’s inequality 6.2.1 is equality, i.e.,

v(M1) = | deg f | v(M2).

Then f is homotopic to a map which is a local isometry. If | deg f | = 1, f is a
homotopy equivalence and otherwise it is homotopic to a covering map.

Proof. The first step in the proof is to show that a lift f̃ of f to the universal
covering spaces extends to S2

∞. Since the information in the hypothesis of 6.4 has
to do with volume, not topology, we will know at first only that this extension is a
measurable map of S2

∞. Then, the proof of Section 6.3 will be adapted to the current
situation.

The proof works most smoothly if we have good information about the asymptotic
behavior of volumes of simplices. Let σE be a regular simplex in H3 all of whose edge
lengths are E.

Theorem 6.4.1. The volume of σE differs from the maximal volume v3 by a
quantity which decreases exponentially with E.
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Proof. Construct copies of simplices σE centered at a point x0 ∈ H3 by drawing
the four rays from a point x0 through the vertices of an ideal regular simplex σ∞
centered at x0. The simplex whose vertices are on these rays, a distance D from x0,
is isometric to σE for some E. Let C be the distance from x0 to any face of this
simplex. The derivative dv(σE)/dD is less than the area of ∂σE times the maximal
normal velocity of a face of σE. If α is the angle between such a face and the ray
through x0, we have

dv(σE)

dD
< 2π sinα.

From the hyperbolic law of sines (2.6.16) sinα = sinhC/ sinhD, showing that dv(σI)/dD
decreases exponentially with D (since sinhC is bounded). The corresponding state-
ment for E follows since asymptotically, E ∼ 2D + constant.

6.14
            

Lemma 6.4.2. Any simplex with volume close to v3 has all dihedral angles close
to 60◦.

Proof. Such a simplex is properly contained in an ideal simplex with any two
face planes the same, so with one common dihedral angle. 6.4.2 follows form ???

Lemma 6.4.3. There is some constance C such that for every simplex σ with
volume near v3 and for any angle β on a face of σ,

v3 − v(σ) ≥ Cβ2.

Proof. If the vertex v has a face angle of β, first enlarge σ so that the other
three vertices are at ∞, without changing a neighborhood of v. Now prolong one of
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the edges through v to S2
∞, and push v out along this edge. The new spike added

to σ beyond v has thickness at v estimated by a linear function of β (from 2.6.12), 6.15

so its volume is estimated by a quadratic function of β. (This uses the fact that a
cross-section of the spike is approximately an equilateral triangle.)

Lemma 6.4.4. For every point x0 in M1, and almost every ray r through x0, f1(r)
converges to a point on S2

∞.

Proof. Let x0 ∈ H3, and let r be some ray emanating from x0. Let the simplex
σi (with all edges having length i) be placed with a vertex at x0 and with one edge
on r, and let τi be a simplex agreeing with σi in a neighborhood of x0 but with the
edge on r lengthened, to have length i+ 1.

            

The volume of σi and τi ⊃ σi deviate from the supremal value by an amount
εi decreasing exponentially with i, so smearM1 τi and smearM1 σi are very efficient
cycles representing a multiple of [M1]. Since v(M1) = | deg f | v(M2), the cycles
straight f∗ smearM1 σi and straight f∗ smearM1 τi must also be very efficient. In other
words, for all but a set of measure at most v(M1)εi/v3 of simplices σ in smearσi (or
near smear τi), the simplex straight fσ must have volume ≥ v3 − εi. 6.16

Let B be a ball around x0 which embeds in Mi. The chains smearB σi and
smearB τi correspond to the measure for smearM σi and smearM τi restricted to those
singular simplices with the first vertex in the image of B in M1. Thus for all but a
set of measure at most

(
2v(M1)/v3

)∑∞
i=i0

εi of isometries I with take x0 to B, all

simplices I(σi) and I(τi) for all i > i0 are mapped to simplices straight f̃ smearB σ
with volume ≥ v3 − εi. By 6.4.3, the sum of all face angles of the image simplices
is a geometically convergent series. It follows that for all but a set of small measure
of rays r emanating from points in B, f(r) converges to a point on S2

∞; in fact, by
letting i0 → ∞, it follows that for almost every ray r emanating from points in B,
f̃(r) converges. Then there must be a point x′ in B such that for almost every ray r

emanating from x′, f̃(r) converges. Since each ray emanating from a point in H3 is
asymptotic to some ray emanating from x′, this holds for rays through all points in
H3.
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Remark. This measurable extension of f̃ to S2
∞ actually exists under very gen-

eral circumstances, with no assumption on the volume of M1 and M2. The idea is
that if g is a geodesic in M1, f̃(g) behaves like a random walk on M̃2. Almost every
random walk in hyperbolic space converges to a point on Sn−1

∞ . (Moral: always carry
a map when you are in hyperbolic space!)

Lemma 6.4.5. The measurable extension of f̃ to S2
∞ carries the vertices of almost

every positively oriented ideal regular simplex to the vertices of another positively
oriented ideal regular simplex.

Proof. Consider a point x0 in H3 and a ball B about x0 which embeds in M ,
as before. Let σi be centered at x0. As before, for almost all isometries I which take 6.17

x0 to B, the sequence {straight f̃ ◦ I ◦ σi} has volume converging to v3, and all four
vertices converging to S2

∞.
If for almost all I these four vertices converge to distinct points, we are done.

Otherwise, there is a set of positive measure of ideal regular simplices such that the
image of the vertex set of σ is degenerate: either all four vertices are mapped to the
same point, or three are mapped to one point and the fourth to an arbitrary point.
We will show this is absurd. If the degenerate cases occur

            

with positive measure, there is some pair of points v0 and v1 with f̃(v0) = f̃(v1)

such that for almost all regular ideal simplices spanned by v0, v1, v2, v3, either f̃(v2) =
f̃(v0) or f̃(v3) = f̃(v0). Thus, there is a set A of positive measure with f̃(A) a single
point. Almost every regular ideal simplex with two vertices in A has one other vertex
in A. It is easy to conclude that A must be the entire sphere. (One method is to use
ergodicity as in the proof of 6.4 which will follow.) The image point f̃(A) is invariant
under covering transformations of M1. This implies that the image of π1M1 in π1M2

has a fixed point on S∞, which is absurd.

We resume the proof of 6.4 here. It follows from 6.4.5 that there is a vertex v0 such
that for almost all regular ideal simplices spanned by v0, v1, v2, v3, the image vertices
span a regular ideal simplex. Arrange v0 and f̃(v0) to be the point at infinity in the 6.18

upper half-space model. Three other points v1, v2, v3 span a regular ideal simplex
with v0 if and only if they span an equilateral triangle in the plane, E2. By changing
coordinates, we may assume that f maps vertices of almost all equilateral triangles
parallel to the x-axis to the vertices of an equilateral triangle in the plane. In complex
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notation, let ω = 3
√
−1, so that 0, 1, ω span an equilateral triangle. For almost all

z ∈ C , the entire countable set of triangles spanned by vertices of the form z+ 2−kn,
z + 2−k(n+ 1), z + 2−k(n+ ω), for k, n ∈ Z, are mapped to equilateral triangles.

            

Then the map f̃ must take the form

f̃
(
z + 2−k(n+mω)

)
= g(z) + h(z) · 2−k(n+mω), k, n,m ∈ Z,

for almost all z. The function h is invariant a.e. by the dense group T of translations
of the form z 7→ z+ 2−k(n+mω). This group is ergodic, so h is constant a.e. Similar
reasoning now shows that g is constant a.e., so that f is essentially a fractional linear
transformation on the sphere S2

∞. Since f̃ ◦ Tα = Tf∗α ◦ f̃ , this shows that π1M1 is
conjugate, in Isom(H3), to a subgroup of π1M2.

6.19

6.5. Manifolds with Boundary

There is an obvious way to extend Gromov’s invariant to manifolds with boundary,
as follows. If M is a manifold and A ⊂ M a submanifold, the relative chain group
Ck(M,A) is defined to be the quotient Ck(M)/Ck(A). The norm on Ck(M) goes
over to a norm on Ck(M,A): the norm ‖µ‖ of an element of Ck(M,A) is the total
variation of µ restricted to the set of singular simplices that do not lie in A. The
norm ‖γ‖ of a homology class γ ∈ Hk(M,A) is defined, as before, to be the infimal
norm of relative cycles representing γ. Gromov’s invariant of a compact, oriented
manifold with boundary (M,∂M) is

∥∥[M,∂M ]
∥∥, where [M,∂M ] denotes the relative

fundamental cycle.
There is a second interesting definition which makes sense in an important special

case. For concreteness, we shall deal only with the case of three-manifold whose
boundary consists of tori. For such a manifold M , define

‖ [M,∂M ] ‖0 = lim
a→0

inf{‖z‖ |z straight [M,∂M ] and ‖∂Z‖ ≤ a}.

Observe that ∂z represents the fundamental cycle of ∂M , so that a necessary condi-
tion for this definition to make sense is that ‖ [∂M ] ‖ = 0. This is true in the present
situation that ∂M consists of tori, since the torus admits self-maps of degree > 1.

134 Thurston — The Geometry and Topology of 3-Manifolds



6.5. MANIFOLDS WITH BOUNDARY

Then ‖(M,∂M)‖0 is the limit of a non-decreasing sequence, so to insure the existence
of the limit we need only find an upper bound. This involves a special property of
the torus.

Proposition 6.5.1. There is a constant K such that z is any homologically triv-
ial cycle in C2(T 2), then z bounds a chain c with ‖c‖ ≤ K‖z‖.

Proof. Triangulate T 2 (say, with two “triangles” and a single vertex). Partition
T 2 into disjoint contractible neighborhoods of the vertices. Consider first the case
that no simplices in the support of z have large diameter. Then there is a chain
homotopy of z to its simplicial approximation a(z).

            

The chain homotopy has a norm which is a bounded multiple of the norm of
z. Since simplicial singular chains form a finite dimensional vector space, a(z) is
homologous to zero by a homology whose norm is a bounded multiple of the norm
of a(z). This gives the desired result when the simplices of z are not large. In the
general case, pass to a very large cover T̃ 2 of T 2. For any finite sheeted covering
space p : M̃ → M there is a canonical chain map, transfer: C∗(M) → C∗(M̃). The
transfer of a singular simplex is simply the average of its lifts to M̃ ; this extends in
an obvious way to measures on singular simplices. Clearly p ◦ transfer = id, and
‖ transfer c‖ = ‖c‖. If z is any cycle on T 2, then for a sufficiently large finite cover
T̃ 2 of T 2, the transfer of z to T̃ 2 = T 2 has no large 2-simplices in its support. Then
transfer z is the boundary of a chain c with ‖c‖ ≤ K‖z‖ for some fixed K. The

projection of c back to the base space completes the proof.

6.21

We now have upper bounds for ‖ [M,∂M ] ‖0. In fact, let z be any cycle repre-
senting [M,∂M ], and let ε be any cycle representing [∂M ]. By piecing together z
with a homology from ∂z to ε given by 6.5.1, we find a cycle z′ representing [M,∂M ]
with ‖z′‖ ≤ ‖z‖ + K(‖∂z‖ + ‖ε‖). Passing to the limit as ‖ε‖ → 0, we find that
‖ [M,∂M ] ‖ ≤ ‖z‖ +K‖∂z‖.

The usefulness of the definition of ‖ [M,∂M ] ‖0 arises from the easy
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Proposition 6.5.2. Let (M,∂M) be a compact oriented three-manifold, not nec-
essarily connected, with ∂M consisting of tori. Suppose (N, ∂N) is an oriented man-
ifold obtained by gluing together certain pairs of boundary components of M . Then

‖ [N, ∂N ] ‖0 ≤ ‖ [M,∂M ] ‖0.

Corollary 6.5.3. If (S, ∂S) is any Seifert fiber space, then

‖ [S, ∂S] ‖0 = ‖ [S, ∂S] ‖ = 0.

(The case ∂S = φ is included.)

Proof of Corollary. If S is a circle bundle over a connected surface M with
non-empty boundary, then S (or a double cover of it, if the fibers are not oriented) is
M×S1. Since it covers itself non-trivially its norm (in either sense) is 0. If S is a circle
bundle over a closed surface M , it is obtained by identification of (M − D2) × S1

with D2 × S1, so its norm is also zero. If S is a Seifert fibration, it is obtained
by identifying solid torus neighborhoods of the singular fibers with the complement
which is a fibration.

Proof of 6.5.2. A cycle z representing [M,∂M ] with ‖∂z‖ ≤ ε goes over to a
chain on [N, ∂N ], which can be corrected to be a cycle z′ with ‖z‖′ ≤ ‖z‖+Kε. 6.22

If M is a complete oriented hyperbolic manifold with finite total volume, recall
that M is the interior of a compact manifold M̄ with boundary consisting of tori.
Both ‖ [M̄, ∂M̄ ] ‖ and ‖ [M̄, ∂M̄ ] ‖0 can be computed in this case:

Lemma 6.5.4 (Relative version of Gromov’s Theorem). If M is a complete ori-
ented hyperbolic three-manifold with finite volume, then

‖ [M̄, ∂M̄ ] ‖0 = ‖[M̄, ∂M̄ ] ‖ =
v(M)

v3

.

Proof. Let σ be a 3-simplex whose volume is nearly the maximal value, v3. Then
smearM σ is a measure on singular cycles with non-compact support. Restrict this
measure to simplices not contained in M(0,ε], and project to M[ε,∞) by a retraction
of M to M[ε,∞). Since the volume of M(0,ε] is small for small ε, this gives a relative
fundamental cycle z′ for

(M[ε,∞), ∂M[ε,∞)) = (M̄, ∂M̄)

with ‖z′‖ ≈ v(M)
v3

and with ‖∂z′‖ small. This proves that

v(M)

v3

≥ ‖ [M̄, ∂M̄ ] ‖0.
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There is an immediate inequality

‖ [M̄, ∂M̄ ] ‖0 ≥ ‖ [M̄, ∂M̄ ] ‖.

To complete the proof, we will show that ‖ [M̄, ∂M̄ ] ‖ ≥ v(M)/v3. This is done by a
straightening operation, as in 6.1.7. For this, note that if σ is any simplex lying in 6.23

M(0,ε], then straight(σ) also lies in M(0,ε], since M(0,ε] is convex. Hence we obtain a
chain map

straight : C∗(M,M(0,ε])→ C∗(M,M(0,ε]),

chain homotopic to the identity, and not increasing norms. As in 6.1.7, this gives the
inequality

‖ [M,M(0,ε]] ‖ ≥
v(M[ε,∞))

v3
.

Since for small ε there is a chain isomorphism between Ck(M,M(0,ε]) and Ck(M̄, ∂M̄)
which is a ‖ ‖-isometry, this proves 6.5.4.

Here is an inequality which enables one to compute Gromov’s invariant for much
more general three-manifolds:

Theorem 6.5.5. Suppose M is a closed oriented three-manifold and H ⊂M is a
three-dimensional submanifold with a complete hyperbolic structure of finite volume.
Suppose H̄ is embedded in M and that ∂H̄ is incompressible. Then

‖ [M ] ‖ ≥ v(H)

v3
.

Remark. Of course, the hypothesis that ∂H̄ is incompressible is necessary; oth-
erwise M might be S3. If H were not hyperbolic, further hypotheses would be needed
to obtain an inequality. Consider, for instance, the product Mg × I where Mg is a
surface of genus g > 1. Then ‖ [Mg] ‖ = 2 v(Mg)/π = 4 |χ(Mg)|, so

‖ [Mg × I, ∂(Mg × I)] ‖ ≥ ‖ [Mg] ‖ ≥ 4 |χ(Mg)|.

On the other hand, one can identify the boundary of this manifold to obtain Mg×S1, 6.24

which has norm 0. The boundary can also be identified to obtain hyperbolic manifolds
(see §4.6, or § ). Since finite covers of arbitrarily high degree and with arbitrarily
high norm can also be obtained by gluing the boundary of the same manifold, no
useful inequality is obtained in either direction.

Proof. Since this is a digression, we give only a sketch of a proof.
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With 6.5.5 combined with 6.5.2, one can compute Gromov’s invariant for any
manifold which is obtained from Seifert fiber spaces and complete hyperbolic mani-
folds of finite volume by identifying along incompressible tori.

The strict and relative versions of Gromov’s theorems may be combined; here is
the most interesting case:

Theorem 6.5.6. Suppose M1 is a complete hyperbolic manifold of finite volume
and that M2 6= M1 is a complete hyperbolic manifold obtained topologically by replac-
ing certain cusps of M2 by solid tori. Then v(M1) > v(M2).

6.25

Proof. No new ideas are needed. Consider some map f : m1 → M2 which
collpases certain components of M1(0,ε]

to short geodesics in M2. Now apply the proof
of 6.4.

6.6. Ordinals

Closed oriented surfaces can be arranged very neatly in a single sequence,
            

in terms of their Euler characteristic. What happens when we arrange all hyper-
bolic three-manifolds in terms of their volume? From Jørgensen’s theorem, 5.12 it
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follows that the set of volumes is a closed subset of R+ . Furthermore, by combining
Jørgensen’s theorem with the relative version of Gromov’s theorem, 6.5.4, we obtain

Corollary 6.6.1. The set of volumes of hyperbolic three-manifolds is well-ordered.

Proof. Let v(M1) ≥ v(M2) ≥ . . . ≥ v(Mk) ≥ . . . be any non-ascending sequence
of volumes. By Jørgensen’s theorem, by passage to a subsequence we may assume that
the sequence {Mi} converges geometrically to a manifold M , with v(M) ≤ lim v(Mi).
By 6.5.2, eventually ‖ [Mi] ‖0 ≤ ‖ [M ] ‖0, so 6.5.4 implies that the sequence of volumes
is eventually constant.

6.26

Corollary 6.6.2. The volume is a finite-to-one function of hyperbolic mani-
folds.

Proof. Use the proof of 6.6.1, but apply the strict inequality 6.5.6 in place of
6.5.2, to show that a convergent sequence of manifolds with non-increasing volume
must be eventually constant.

In view of these results, the volumes of complete hyperbolic manifolds are indexed
by countable ordinals. In other words, there is a smallest volume v1, a next smallest
volume v2, and so forth. This sequence v1 < v2 < v3 < · · · < vk < · · · has a limit
point vω, which is the smallest volume of a complete hyperbolic manifold with one
cusp. The next smallest manifold with one cusp has volume v2ω. It is a limit of
manifolds with volumes vω+1, vω+2, . . . , vω+k, . . . . The first volume of a manifold
with two cusps is vω2 , and so forth. (See the discussion on pp. 5.59–5.60, as well
as Theorem 6.5.6.) The set of all volumes has order type ωω. These volumes are
indexed by the ordinals less than ωω, which are represented by polynomials in ω.
Each volume of a manifold with k cusps is indexed by an ordinal of the form α · ωk,
(where the product α · β is the ordinal corresponding to the order type obtained by
replacing each element of α with a copy of β). There are examples where α is a limit
ordinal. These can be constructed from coverings of link complements. For instance,
the Whitehead link complement has two distinct 2-fold covers; one has two cusps and
the other has three, so the common volume corresponds to an ordinal divisible by
ω3. I do not know any examples of closed manifolds corresponding to limit ordinals.

It would be very interesting if a computer study could determine some of the low
volumes, such as v1, v2, vω, vω2 . It seems plausible that some of these might come
from Dehn surgery on the Borromean rings.

There is some constant C such that every manifold with k cusps has volume
≥ C ·k. This follows from the analysis in 5.11.2: the number of boundary components
of M[ε,∞) is bounded by the number of disjoint ε/2 balls which can fit in M . It would
be interesting to calculate or estimate the best constant C.
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Corollary 6.6.3. The set of values of Gromov’s invariant ‖ [ ] ‖0 on the class
of connected manifolds obtained from Seifert fiber spaces and complete hyperbolic
manifolds of finite volume by identifying along incompressible tori is a closed well-
ordered subset of R+ , with order type ωω.

We shall see later (§ ) that this class contains all Haken manifolds with toral
boundaries.

Proof. Extend the volume function to v(M) = v3 · ‖ [M ] ‖0 when M is not
hyperbolic. From 6.5.5 and 6.5.2, we know that every value of v is a finite sum of
volumes of hyperbolic manifolds. Suppose {wi} is a bounded sequence of values of
v. Express each wi as the sum of volumes of hyperbolic pieces of a manifold Mi with
v(M)i = wi. The number of terms is bounded, since there is a lower bound to the
volume of a hyperbolic manifold, so we may pass to an infinite subsequence where
the number of terms in this expression is constant. Since every infinite sequence of
ordinals has an infinite non-decreasing subsequence, we may pass to a subsequence
of wi’s where all terms in these expressions are non-decreasing. This proves that 6.28

the set of values of v is well-ordered. Furthermore, our subsequence has a limit
w = vα1 + · · ·+vαk , which is expressed as a sum of limits of non-decreasing sequences
of volumes. Each vαj is the volume of a hyperbolic manifold Mj with at least as many
cusps as the limiting number of cusps of the corresponding hyperbolic piece of Mi.
Therefore, the M̄j’s may be glued together to obtain a manifold M with v(M) = w.
This shows the set of values of v is closed. The fact that the order type is ωω can
be deduced easily by showing that every value of v is not in the k-th derived set, for
some integer k; in fact, k ≤ v/C, where C is the constant just discussed.

6.7. Commensurability

Definition 6.7.1. If Γ1 and Γ2 are two discrete subgroups of isometries of Hn,
then Γ1 is commensurable with Γ2 if Γ1 is conjugate (in the group of isometries of
Hn) to a group Γ′1 such that Γ′ ∩ Γ2 has finite index in Γ′1 and in Γ2.

Definition 6.7.2. Two manifolds M1 and M2 are commensurable if they have
finited sheeted covers M̃1 and M̃2 which are homeomorphic.

Commensurability in either sense is an equivalence relation, as the reader may
easily verify. 6.29

Labelled 6.7.3.ex

Example 6.7.3. If W is the Whitehead link and B is the Borromean rings, then
S3 −W has a four-sheeted cover homeomorphic with a two sheeted cover of S3 −B:
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The homeomorphism involves cutting along a disk, twisting 360◦ and gluing back.
Thus S3 −W and S3 − B are commensurable. One can see that π1(S3 −W ) and
π1(S3−B) are commensruable as discrete subgroups of PSL(2, C ) by considering the
tiling of H3 by regular ideal octahedra. Both groups preserve this tiling, so they are
contained in the full group of symmetries of the octahedral tiling, with finite index.
Therefore, they intersect each other with finite index.

π1(S3 −B) ⊂ Symmetries (octahedral tiling) ⊃ π1(S3 −W )

π1(S3 −B) ⊃ π1(S3 −B) ∩ π1(S3 −W ) ⊂ π1(S3 −W )
6.30

Warning. Two groups Γ1 and Γ2 can be commensurable, and yet not be conju-
gate to subgroups of finite index in a single group.

Proposition 6.7.3. If M1 is a complete hyperbolic manifold with finite volume
and M2 is commensurable with M1, then M2 is homotopy equivalent to a complete
hyperbolic manifold.

Proof. This is a corollary of Mostow’s theorem. Under the hypotheses, M2 has
a finite cover M3 which is hyperbolic. M3 has a finite cover M4 which is a regular
cover of M2, so that π1(M4) is a normal subgroup of π1(M2). Consider the action
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