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13.49

families of circles on flat toruses. Similarly, 13.6.5 is equivalent to a statement about
families of circles in hyperbolic structures for M2; in fact, since M2 × 1 has no one-
dimensional singularities, it must be totally geodesic in any hyperbolic structure, so
π1M

2 acts as a Fuchsian group. The face planes of M2 × O give rise to a family of
circles in the northern hemisphere of S2

∞, invariant by this Fuchsian group, so each
face corresponds to a circle in the hyperbolic structure for M2.

Theorems 13.6.1, 13.6.4 and 13.6.5 will be proved in the next section, by studying
patterns of circles on surfaces.

In example 13.1.5 we saw that the Borromean rings are the singular locus for
a Euclidean orbifold, in which they are elliptic axes of order 2. With the aid of
Andreev’s theorem, we may find all hyperbolic orbifolds which have the Borromean
rings as singular locus. The rings can be arranged so they are invariant by reflection
in three orthogonal great spheres in S3. (Compare p. 13.4.)

            

Thus, an orbifold O having the rings as elliptic axes of orders k, l and m is an
eight-fold covering space of another orbifold, which has the combinatorial type of a
cube.             

13.50

By Andreev’s theorem, such an orbifold has a hyperbolic structure if and only if k,
l and m are all greater than 2. If k is 2, for example, then there is a sphere in
S3 separating the elliptic axes of orders l and m and intersecting the elliptic axis
of order 2 in four points. This forms an incompressible Euclidean suborbifold of O,
which breaks O into
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two halves, each fibering over two-orbifolds with boundary, but in incompatible ways
(unless l or m is 2).

            

Base spaces of the fibrations

When k = l = m = 4, the fundamental domain, as in example 13.1.5, for π1O
acting on H3 is a regular right-angled dodecahedron.

Any of the numbers k, l or m can be permitted to take the value ∞ in this
discussion, to denote a parabolic cusp. When l = m = ∞, for instance, then O has
a k-fold cover which is the complement of the untwisted 2k-link chain D2k of 6.8.7.            

13.51

13.7. Constructing patterns of circles.

We will formulate a precise statement about patterns of circles on surfaces of
non-positive Euler characteristic which gives theorems 13.6.4 and 13.6.5 as immediate
consequences.

Theorem 13.7.1. Let S be a closed surface with χ(S) ≤ 0. Let τ be a cell-division
of S into cells which are images of immersions of triangles and quadrangles which
lift to embeddings in S̃. Let Θ : E→ [0, π/2] (where E denotes the set of edges of τ)
be any function satisfying the conditions below:

(i) Θ(e) = π/2 if e is an edge of a quadrilateral of τ .
(ii) If e1, e2, e3 [ei ∈ E] form a null-homotopic closed loop, and if

∑3
i=1 Θ(ei) ≥ π,

then these three edges form the boundary of a triangle of τ .
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(iii) If e1, e2, e3, e4 form a null-homotopic closed loop and if
∑4

i=1 Θ(ei) = 2π(⇔
Θ(ei) = π/2), then the ei form the boundary of a quadrilateral or of the union
of two adjacent triangles.

Then there is a metric of constant curvature on S, uniquely determined up to a
scalar multiple, a uniquely determined geometric cell-division of S isotopic to τ so
that the edges are geodesics, and a unique family of circles, one circle Cv for each
vertex v of τ , so that Cv1 and Cv2 intersect at a positive angle if and only if v1 and
v2 lie on a common edge. The angles in which Cv1 and Cv2 meet are determined by
the common edges: there is an intersection point of Cv1 and Cv2 in a two-cell σ if and
only if v1 and v2 are vertices of σ. If σ is a quadrangle and v1 and v2 are diagonally
opposite, then Cv1 is tangent to Cv2; otherwise, they meet at an angle of Θ(e), where 13.52

e is the edge joining them in σ.

Proof. First, observe that quadrangles can be eliminated by subdivision into
two triangles by a new edge e with Θ(e) = 0.

            

There is an extraneous tangency of circles here—in fact, all extraneous tangencies
come from this situation. Henceforth, we assume τ has no quadrangles. The idea
is to solve for the radii of the circles Cv1 . Given an arbitrary set of radii, we shall
construct a Riemannian metric on S with cone type singularities at the vertices of
τ , which has a family of circles of the given radii meeting at the given angles. We
adjust the radii until S lies flat at each vertex. Thus, the proof is closely analogous
to the idea that one can make a conformal change of any given Riemannian metric
on a surface until it has constant curvature. Observe that a conformal map is one
which takes infinitesimal circles to infinitesimal circles; the conformal factor is the
ratio of the radii of the target and source circles.

Lemma 13.7.2. For any three non-obtuse angles θ1, θ2 and θ3 ∈ [0, π/2] and any
three positive numbers R1, R2, and R3, there is a configuration of 3 circles in both hy-
perbolic and Euclidean geometry, unique up to isometry, having radii Ri and meeting
in angles θi.

13.53

340 Thurston — The Geometry and Topology of 3-Manifolds



13.7. CONSTRUCTING PATTERNS OF CIRCLES.
            

Proof of lemma. The length lk of a side of the hypothetical triangle of centers
of the circles is determined as the side opposite the obtuse angle π − θk in a triangle
whose other sides are Ri and Rj . Thus, sup(Ri, Rj) < lk ≤ Ri + Rj . The three
numbers l1, l2 and l3 obtained in this way clearly satisfy the triangle inequalities
lk < li + lj. Hence, one can construct the appropriate triangle, which gives the
desired circles.

Proof of 13.7.1, continued. Let V denote the set of vertices of τ . For every element
R ∈ RV+ (i.e., if we choose a radius for the circle about each vertex), there is a singular
Riemannian metric, which is pieced together from the triangles of centers of circles
with given radii and angles of intersetcion as in 13.7.2. The triangles are taken in
H2 or E2 depending on whether χ(S) < 0 or χ(S) = 0. The edge lengths of cells of
τ match whenever they are glued together, so we obtain a metric, with singularities
only at the vertices, and constant curvature 0 or −1 everywhere else.

The notion of curvature can easily be extended to Riemannian surfaces with
certain sorts of singularities. The curvature form Kda becomes a measure κ on such 13.54

a surface. Tailors are of necessity familiar with curvature as a measure. Thus, a seam
has curvature (k1− k2) ·µ, where µ is one-dimensional Lebesgue measure and k1 and
k2 are the geodesic curvatures of the two halves.
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(The effect of gathering is more subtle—it is obtained by putting two lines infinitely
close together, one with positive curvature and one with balancing negative curvature.
Another instance of this is the boundary of a lens.)

More to the point for us is the curvature concentrated at the apex of a cone: it
is 2π − α, where α is the cone angle (computed by splitting the cone to the apex
and laying it flat). It is easy to see that this is the unique value consistent with the
Gauss-Bonnet theorem.

Formally, we have a map

F : RV+ → R
V .

Given an element R ∈ R
V

+ , we construct the singular Riemannian metric on S, as
above; F (R) describes the discrete part of the curvature measure κR on S, in other 13.55

words, F (R)(v) = κR(v). Our problem is to show that O is in the image of F , for
then we will have a non-singular metric with the desired pattern of circles built in.

When χ(S) = 0, then the shapes of the Euclidean triangles do not change when
we multiply R by a constant, so F (R) also does not change. Thus we may as well
normalize so that

∑
v∈VR(v) = 1. Let ∆ ⊂ RV+ be this locus—∆ is the interior of

the standard |V| − 1 simplex. Observe, by the Guass-Bonnet theorem, that∑
v∈V

κR(v) = 0.

Let Z ⊂ RV be the locus defined by this equation.

If χ(S) < 0, then changing R by a constant does make a difference in κ. In this
case, let ∆ ⊂ RV+ denote the set of R such that the associated metric on S has total
area 2π |χ(S)|. By the Gauss-Bonnet theorem, ∆ = F−1(Z) (with Z as above). As
one can easily believe, ∆ intersects each ray through O in a unique point, so ∆ is a
simplex in this case also. This fact is easily deduced from the following lemma, which
will also prove the uniqueness part of 13.7.1:

Lemma 13.7.3. Let C1, C2 and C3 be circles of radii R1, R2 and R3 in hyperbolic
or Euclidean geometry, meeting pairwise in non-obtuse angles. If C2 and C3 are held
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constant but C1 is varied in such a way that the angles of intersection are constant
but R1 decreases, then the center of C1 moves toward the interior of the triangle of
centers.             

13.56

Thus we have

∂α1

∂R1
< 0 ,

∂α2

∂R1
> 0 ,

∂α3

∂R1
> 0,

where the αi are the angles of the triangle of centers.

Proof of 13.7.3. Consider first the Euclidean case. Let l1, l2 and l3 denote the
lengths of the sides of the triangle of centers. The partial derivatives ∂l2/∂R1 and
∂l3/∂R1 can be computed geometrically.

            

If v1 denotes the center of C1, then ∂v1/∂R1 is determined as the vector whose
orthogonal projections sides 2 and 3 are ∂l2/∂R1 and ∂l3/∂R1. Thus,

R1
∂v1

∂R1

is the vector from v1 to the intersection of the lines joining the pairs of intersection
points of two circles.
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13.57

When all angles of intersection of circles are acute, no circle meets the opposite
side of the triangle of centers:

            

C3 meets v1v2 =⇒ C1 and C2 don’t meet.

It follows that ∂v1/∂R1 points to the interior of ∆v1v2v3.

The hyperbolic proof is similar, except that some of it takes place in the tangent
space to H2 at v1.

Continuation of proof of 13.7.1. From lemma 13.7.3 it follows that when all three
radii are increased, the new triangle of centers can be arranged to contain the old
one. Thus, the area of S is monotone, for each ray in R

V

+ . The area near 0 is near
0, and near ∞ is near π × (# triangles + 2# quadrangles); thus the ray intersects
∆ = F−1(Z) in a unique point.

It is now easy to prove that F is an embedding of ∆ in Z. In fact, consider any two
distinct points R and R′ ∈ ∆. Let V− ⊂ V be the set of v where R′(v) < R(v). Clearly
V− is a proper subset. Let τV− be the subcomplex of τ spanned by V−. (τV− consists
of all cells whose vertices are contained in V−). Let SV− be a small neighborhood of
τV− . We compare the geodesic curvature of ∂SV− in the two metrics. To do this, we
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may arrange ∂SV− to be orthogonal to each edge it meets. Each arc of intersection
of ∂SV− with a triangle having one vertex in V− contributes approximately αi to the 13.58

total curvature, while each arc of intersection with a triangle having two vertices in
V− contributes approximately βi + γi − π.            

In view of 13.7.3, an angle such as α1 increases in the R′ metric. The change in
β1 and γ1 is unpredictable. However, their sum must increase: first, let R1 and R2

decrease; π − δ1 − (β1 + β2), which is the area of the triangle in the hyperbolic case,
decreases or remains constant but δ1 also decreases so β1 + γ1 must increase. Then
let R3 increase; by 13.7.3, β1 and γ1 both increase. Hence, the geodesic curvature of
∂SV− increases.

From the Gauss-Bonnet formula,∑
v∈V−

κ(v) =

∫
∂S
V−

dg ds−
∫
S
V−

K dA+ 2πχ(SV′)

it follows that the total curvature at vertices in V− must decrease in the R′ metric.
(Note that the area of SV− decreases, so if k = −1, the second term on the right
decreases.) In particular, F (R) 6= F (R′), which shows that F is an embedding of ∆. 13.59

The proof that O is in the image of F is based on the same principle as the
proof of uniqueness. We can extract information about the limiting behavior of F as
R approaches ∂∆ by studying the total curvature of the subsurface SVO , where VO

consists of the vertices v such that R(v) is tending toward O. When a triangle of τ
has two vertices in VO and the third not in VO, then the sum of the two angles at
vertices in VO tends toward π.
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When a triangle of τ has only one vertex in VO, then the angle at that vertex tends
toward the value π − Θ(e), where e is the opposite edge. Thus, the total curvature
of ∂SVO tends toward the value ∑

e∈L(τ
VO

)

(
π −Θ(e)

)
,

where L(τVO) is the “link of τVO .”
The Gauss-Bonnet formula gives 13.60

Lim
∑
v∈VO

κ(v) = −
∑

e∈L(τ
VO

)

(
π −Θ(e)

)
+ 2πχ(SVO) < 0.

(Note that area (SVO) → 0.) To see that the right hand side is always negative, it
suffices to consider the case that τVO is connected. Unless τVO has Euler characteristic
one, both terms are non-positive, and the sum is negative. If L(τVO) has length 5 or
more, then ∑

e∈L(τ
VO

)

π −Θ(e) > eπ,

so the sum is negative. The cases when L(τVO) has length 3 or 4 are dealt with in
hypotheses (ii) and (iii) of theorem 13.7.1.

When V′ is any proper subset of VO and R ∈ ∆ is an arbitrary point, we also
have an inequality ∑

v∈V′
κR(v) > −

∑
e∈L(τ

V′ )

(
π −Θ(e)

)
+ 2πχ(SV′).

This may be deduced quickly by comparing the R metric with a metric R′ in which
R′(V′) is near 0. In other words, the image F (∆) is contained in the interior of the
polyhedron P ⊂ Z defined by the above inequalities. Since F (∆) is an open set
whose boundary is ∂P , F (∆) = interior (P ). Since O ∈ int(P ), this completes the
proof of 13.7.1, and also that of 13.6.4, and 13.6.5.

Remarks. This proof was based on a practical algorithm for actually construct-
ing patterns of circles. The idea of the algorithm is to adjust, iteratively, the radii of
the circles. A change of any single radius affects most strongly the curvature at that
vertex, so this proces converges reasonably well. 13.61

The patterns of circles on surfaces of constant curvature, with singularities at
the centers of the circles, have a three-dimensional interpretation. Because of the
inclusions isom(H2) ⊂ isom(H3) and isom(E2) ⊂ isom(H3), there is associated with
such a surface S a hyperbolic three-manifold MS , homeomorphic to S×R, with cone
type singularities along (the singularities of S)×R. Each circle on S determines a
totally geodesic submanifold (a “plane”) in MS. These, together with the totally
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geodesic surface isotopic to S when S is hyperbolic, cut out a submanifold of MS

with finite volume—it is an orbifold as in 13.6.4 or 13.6.5 but with singularities along
arcs or half-lines running from the top to the bottom.

Corollary 13.7.4. Theorems 13.6.4 and 13.6.5 hold when S is a Euclidean or
hyperbolic orbifold, instead of a surface. (The orbifold O is to have only singularities
as in 13.6.4 or 13.6.5, plus (singularities of S)× I or (singularities of S)× [0,∞) .)

Proof. Solve for pattern of circles on S in a metric of constant curvature on S—
the underyling surface of S will have a Riemannian metric with cone type singularities
of curvature 2π(1/n− 1) at elliptic points of S, and angles at corner reflectors of S.

An alternative proof is to find a surface S̃ which is a finite covering space of the
orbifold S, and find a hyperbolic structure for the corresponding covering space Õ
of O. The existence of a hyperbolic structure for O follows from the uniqueness of
the hyperbolic structure on Õ thence the invariance by deck transformations of Õ
over O.

13.62

13.8. A geometric compactification for the Teichmüller spaces of
polygonal orbifolds

We will construct hyperbolic structures for a much greater variety of orbifolds by
studying the quasi-isometric deformation spaces of orbifolds with boundary whose
underlying space is the three-disk. In order to do this, we need a description of the
limiting behavior of conformal structure on its boundary. We shall focus on the case
when the boundary is a disjoint union of polygonal orbifolds. For this, the greatest
clarity is attained by finding the right compactifications for these Teichmüller spaces.

When M is an orbifold, M[ε,∞) is defined to consist of points x in M such that
the ball of radius ε/2 about x has a finite fundamental group. Equivalently, no loop
through x of length < ε has infinite order in π1(M). M(0,ε] is defined similarly. It does
not, in general, contain a neighborhood of the singular locus. With this definition, it
follows (as in §5) that each component of M(0,ε] is covered by a horoball or a uniform
neighborhood of an axis, and its fundamental group contains Z or Z⊕ Z with finite
index.

In §5 we defined the geometric topology on sequences of hyperbolic three-mani-
folds of finite volume. For our present purpose, we want to modify this definition
slightly. First, define a hyperbolic structure with nodes on a two-dimensional orbifold
O to be a complete hyperbolic structure with finite volume on the complement of
some one-dimensional suborbifold, whose components are the nodes. This includes
the case when there are no nodes. A topology is defined on the set of hyperbolic
structures with nodes, up to diffeomorphisms isotopic to the identity on a given
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surface, by saying that M1 and M2 have distance ≤ ε if there is a diffeomorphism
of O [isotopic to the identity] whose restriction to M1[ε′,∞) is a (eε)-quasi-isometry to
M2[ε′,∞). Here, ε′ is some fixed, small number. 13.63

Remark. The related topology on hyperbolic structures with nodes up to dif-
feomorphism on a given surface is always compact. (Compare Jørgensen’s theorem,
5.12, and Mumford’s theorem, 8.8.3.) This gives a beautiful compactification for
the modular space T(M)/Diff(M), which has been studied by Bers, Earle and Mar-
den and Abikoff. What we shall do works because a polygonal orbifold has a finite
modular group.

For any two-dimensional orbifold O with χ(O) < 0, let N(O) be the space of all
hyperbolic structures with nodes (up to isotopy) on O.

Theorem 13.8.1. When P is an n-gonal orbifold, N(P ) is homeomorphic to the
(closed) disk, Dn−3, with interior T(P ). It has a natural cell-structure with open cells
parametrized by the set of nodes (up to isotopy).

Here are the three simplest examples.

If P is a quadrilateral, then T(P ) is R. There are two possible nodes. N(P ) looks
like this:
            

If there are two adjacent order 2 corner reflectors, the qualitative picture must be
modified appropriately. For instance,

            

When P is a pentagon, T(P ) is R2 . There are five possible nodes, and the cell-
structure is diagrammed below: 13.64
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When there is only one node, the pentagon is pinched into a quadrilateral and a
triangle, so there is still one degree of freedom.

When P is a hexagon, there are 9 possible nodes.
            

Each single node pinches the hexagon into a pentagon and a triangle, or into two
quadrilaterals, so its associated 2-cell is a pentagon or a square. The cell division of
∂D3 is diagrammed below:

            

(The zero and one-dimensional cells are parametrized by the union of the nodes of 13.65

the incident 2-cells.)

Proof of 13.8.1. It is easy to see that N(P ) is compact by familiar arguments,
as in 5.12 and 8.8.3, for instance. In fact, choose ε sufficiently small so that P(0,ε]

is always a disjoint union of regular neighborhoods of short arcs. Given a sequence
{Pi}, we can pass to a subsequence so that the core one-orbifolds of the components
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of Pi(0,ε] are constant. Extend this system of arcs to a maximal system of disjoint
geodesic arcs {α1, . . . , αk}. The lengths of all such arcs remain bounded in {Pi}
(this follows from area considerations), so there is a subsequence so that all lengths
converge—possibly to zero. But any set of {l(αi)|l(αi) ≥ 0} defines a hyperbolic
structure with nodes, so our sequence converges in N(P ).

Furthermore, we have described a covering of N(P ) by neighborhoods diffeomor-
phic to quadrants, so it has the structure of a manifold with corners. Change of
coordinates is obviously differentiable. Each stratum consists of hyperbolic struc-
tures with a prescribed set of nodes, so it is diffeomorphic to Euclidean space (this
also follows directly from the nature of our local coordinate systems.)

Theorem 13.8.1 follows from this information. Here is a little overproof. An
explicit homeomorphism to a disk can be constructed by observing that PL(P )‡ has
a natural triangulation, which is dual to the cell structure of ∂N(P ). This arises
from the fact that any simple geodesic on P must be orthogonal to the mirrors, so
a geodesic lamination on P is finite. The simplices in PL(P ) are measures on a
maximal family of geodesic one-orbifolds. 13.66

A projective structure for PL(P )—that is, a piecewise projective§ homeomor-
phism to a sphere—can be obtained as follows (compare Corollary 9.7.4). The set
of geodesic laminations on P is in one-to-one correspondence with the set of cell
divisions of P which have no added vertices. Geometrically, in fact, a geometric
lamination extends in the projective (Klein) model to give a subdivision of the dual
polygon.

            

Take the model P now to be a regular polygon in R
2 ⊂ R

3 . Let V be the vertex
set. For any function f : V → R, let Cf be the convex hull of the set of points

‡For definition, and other information, see p. 8.58
§See remark 9.5.9.
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obtained by moving each vertex v of P to a height f(v) (positive or negative along
the perpendicular to R

2 through v). The “top” of Cf gives a subdivision of P .
The nature of this subdivision is unchanged if a function which extends to an affine
function from R

2 to R is added to f . Thus, we have a map RV /R3 → GL(P ). To lift
the map to measured laminations, take the directional derivative at O of the bending
measure for the top of the convex hull, in the direction f . The global description of
this map is that a function f is associated to the measure which assigns to each edge
e of the bending locus the change in slope of the intersection of the faces adjacent to
e with a plane perpendicular to e.

It is geometrically clear that we thus obtain a piecewise linear homeomorphism, 13.67

e : ML(P ) ≈ RV −3 − 0.

The set of measures which assigns a maximal value of 1 to an edge gives a realization
of PL(P ) as a convex polyhedral sphere Q in R

V −3. The dual polyhedron Q∗—
which is, by definition, the set of vectors X ∈ RV −3 such that supy∈QX · Y = 1—is
the boundary of a convex disk, combinatorially equal to N(P ). This seems explicit
enough for now.

13.9. A geometric compactification for the deformation spaces of certain
Kleinian groups.

Let O be an orbifold with underlying space XO = D3, ΣO ⊂ ∂D3, and ∂ΣO a
union of polygons.

We will use the terminology Kleinian structure on O to mean a diffeomorphism
of O to a Kleinian manifold B3 − LΓ/Γ, where Γ is a Kleinian group.

In order to describe the ways in which Kleinian structures on O can degenerate,
we will also define the notion of a Kleinian structure with nodes on O. The nodes
are meant to represent the limiting behavior as some one-dimensional suborbifold
S becomes shorter and shorter, finally becoming parabolic. We shall see that this
happens only when S is isotopic in one or more ways to ∂O; the geometry depends on
the set of suborbifolds on ∂O isotopic to S which are being pinched in the conformal
geometry of ∂O. To take care of the various possibilities, nodes are to be of one of
these three types:

(a) An incompressible one-suborbifold of ∂O.
(b) An incompressible two-dimensional suborbifold of O, with Euler characteristic

zero and non-empty boundary. In general, it would be one of these five: 13.68
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but for the orbifolds we are considering only the last two can occur.
(c) An orbifold T modelled on P2k×R, k > 2 where P2k is a polygon with 2k sides.

The sides of P2k are to alternate being on ∂O and in the interior of O. (Cases
a and b could be subsumed under this case by thickening them and regarding
them as the cases k = 1 and k = 2.)

A Kleinian structure with nodes is now defined to be a Kleinian structure in
the complement of a union of nodes of the above types, neighborhoods of the nodes
in being horoball neighborhoods of cusps in the Kleinian structures. Of course, if
O minus the nodes is not connected, each component is the quotient of a separate
Kleinian group (so our definition was not general enough for this case).

Let N(O) denote the set of all Kleinian structure with nodes on O, up to homeo-
morphisms isotopic to the identity. As for surfaces, we define a topology on N(O), by
saying that two structures K1 and K2 have distance ≤ ε if there is a homeomorphism
between them which is an eε− quasi-isometry on K1[ε,∞) intersected with the convex
hull of K1.

Theorem 13.9.1. Let O be as above with O irreducible and ∂O incompressible. If
O has one non-elementary Kleinian structure, then N(O) is compact. The conformal
structure on ∂O is continuous, and it gives a homeomorphism to a disk,

N(O) ≈ N(∂O).

Note: The necessary and sufficiently conditions for existence of a Kleinian struc-
ture will be given in [???] or they can be deduced from Andreev’s theorem 13.6.1. 13.69

We will use 13.6.1 to prove existence.

Proof. We will study the convex hulls of the Kleinian structures with nodes on
O. (When the Kleinian structure is disconnected, this is the union of convex hulls of
the pieces.)

Lemma 13.9.2. There is a uniform upper bound for the volume of the convex hull,
H, of a Kleinian structure with nodes on O.

Proof of 13.9.2. The bending lamination for ∂O has a bounded number of
components. Therefore, H is (geometrically) a polyhedron with a bounded number
of faces, each with a bounded number of sides. Hence the area of the boundary of
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the polyhedron is bounded. Its volume is also bounded, in view of the isoperimetric
inequality,

volume (S) ≤ 1/2 area(∂S)

for a set S ⊂ H3. (cf. §5.11).

Theorem 13.9.1 can now be derived by an adaptation of the proof of Jørgensen’s
theorem (5.12) to the present situation. It can also be proved by a direct analysis
of the shape of H. We will carry through this latter course to make this proof more
concrete and self-contained.

The first observation is that H can degenerate only when some edges of H become
very long. When a face of H has vertices at infinity, “length” is measured here as
the distance between canonical neighborhoods of the vertices. In fact, if the edges
of H remain bounded in length, the faces remain bounded in shape by (§13.8, for 13.70

instance; the components of ∂H can be treated as single faces for this analysis). If we
view XH as a convex polyhedron in H3 then as long as a sequence {Hi} has all faces
remaining bounded in shape, there is a subsequence such that the polyhedra {XHi}
converge, in the sense that the maps of each face into H3 converge. One possibility is
that the limiting map of XH has a two-dimensional image: this happens in the case
of a sequence of quasi-Fuchsian groups converging to a Fuchsian group, and we do
not regard the limit as degenerate. The significant point is that two silvered faces of
H (faces of H not on ∂H) which are not incident (along an edge or at a cusp) cannot
come close together unless their diameter goes to infinity, because any points of close
approach are deep inside H(0,ε].

We can obtain a good picture of the degeneration which occurs as an edge becomes
very long by the following analysis. We will consider only edges which are not in the
interior of ∂H. Since the area of each face of H is bounded, any edge e of H which is
very long must be close and nearly parallel, for most of its length all but a bounded
part, of its length, on both sides, to other edges of its adjacent faces.
            

Similarly, these nearly parallel edges must be close and nearly parallel to still
more edges on the far side from e. How long does this continue? Remember that H
has an angle at each edge. In fact, if we ignore edges in the interior of ∂H, no angle
exceeds 90◦. Special note should be made here of the angles between ∂H and mirrors 13.71
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of H: the condition for convexity of H is that ∂H, together with its reflected image,

is convex, so these angles also are ≤ 90◦. (If they are strictly less, then that edge

of ∂H is part of the bending locus, and consequently it must have ends on order 2

corner reflectors.) Since H is geometrically a convex polyhedron, the only way that

it can be bent so much along such closely spaced lines is that it be very thin. In

other words, along most of the length of e, the planes perpendicular to e ⊂ XH ⊂ H3

intersect XH in a small polygon, which represents a suborbifold. It has 2, 3 or 4

intersections with edges of XH not interior to ∂H.
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By area-angle considerations, this small suborbifold must have non-negative Euler
characteristic. We investigate the cases separately.

(a) χ = 0, ∂ = ∅

(i)
3 3

3

This is automatically incompressible, and since it is closed,

it must be homotopic to a cusp. But this is supposed to be avoided by

keeping our investigations away from the vertices of faces of P .

(ii)
2 2

2 2
Either it is incompressible, and avoided as in (i), or com-

pressible, so it is homotopic to some edge of H.
But since it is small, it must be very close to that edge. This contradicts the 13.72

way it was chosen—or, in any case, it can account for only a small part of the
length of e.

(b) χ = 0, ∂ 6= ∅:

(i)
2 2m

m m

∂

(ii) m m

∂

∂
where m denotes a mirror.

These can occur either as small ∂-incompressible suborbifolds (representing
incipient two-dimensional nodes) or as small ∂-compressible orbifolds, repre-

senting the boundary of a neighborhood of an incipient one-dimensional node.
            

(c) χ > 0. This can occur, since O is irreducible and ∂O incompressible.

We now can see that H is decomposed into reasonably wide convex pieces, joined
together along long thin spikes whose cross-sections are two-dimensional orbifolds
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with boundary. There also may be some long thin spikes representing neighborhoods
of short one-suborbifolds (arcs) of ∂O.

H(0,ε] contains all the long spikes. It may also intersect certain regions between 13.73

spikes, where two silvered faces of H come close together. If so, then H(0,ε] contains
the entire region, bounded by spikes (since each edge of the two nearby faces comes
to a spike within a bounded distance, as we have seen).

The fundamental group of that part of H must be elementary: in other words, all
faces represent reflections in planes perpendicular to or containing a single axis.

It should by now be clear that N(O) is compact. By [???], Kleinian structures with
nodes of a certain type on O are parametrized, if they exist, by conformal structures
with nodes of the appropriate type on ∂O. Given a Kleinian structure with nodes,
K, and a nearby element K ′ in N(O), theer is a map with very small dilation from
all but a small neighborhood of the nodes in ∂K to ∂K ′, covering all but a long thin
neck; this implies that ∂K ′ is near ∂K in N(∂O). Therefore, the map from N(O) to
N(∂O) is continuous. Since N(O) is compact, the image is all of N(∂O). Since the
map is one-to-one, it is a homeomorphism.

To be continued . . . .
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