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By the dawn of the 20th century the classi-

fication of surfaces, or 2-manifolds, was well-

understood.

In particular, it was known that a 2-manifold

which is closed (compact, connected, empty

boundary) and simply-connected must be home-

omorphic to the 2-sphere, S2.

In 1904, Henri Poincaré asked if the analogous

assertion is true for dimension three.

Poincaré conjecture: If M3 is a closed 3-

manifold which is simply-connected, then M3 is

homeomorphic with S3, the standard 3-sphere.

An equivalent form is the following: If Q3 is

a compact, contractible 3-manifold, then Q is

homeomorphic with the standard 3-ball.



The PC has been the “holy grail” for low-

dimensional topologists for many years, and

several notorious false proofs have been put

forward.

Almost exactly a century after it was proposed,

the PC is now considered solved in the affir-

mative by Grigori Perelman.

This talk is a discussion of some other con-

jectures in group theory and low-dimensional

topology which are closely related, or even equiv-

alent to, the PC.



Collapsing and simple-homotopy:

Suppose the finite polyhedron K has a simplex

σn which has a free face τn−1 (meaning int(τ)

does not intersect any other part of K). Then

the transition:

K −→ K \ {int(σ) ∪ int(τ)}

is called an elementary collapse. The inverse

of this operation is an elementary expansion.



J. H. C. Whitehead defined “simple homotopy”

to be the equivalence relation among polyhe-

dra which is generated by elementary collapse

and expansion. Subdivision is also allowed.

If two polyhedra have the same simple homo-

topy type, then they are homotopy equivalent,

but the converse is not true. Whitehead tor-

sion is an obstruction to going in the other

direction.



A sequence of expansions and collapses involv-

ing simplices of dimension at most n is called

an n-deformation.

Theorem (Whitehead-Wall): (n 6= 2) If poly-

hedra Kn and Ln are simple-homotopy equiv-

alent, then there exists an n + 1-deformation

from K to L.

Generalized geometric AC conjecture: same

for n = 2.

Geometric AC conjecture: K2 contractible

⇒ K 3-deforms to a point.



With the proof of the PC, we now know that

the geometric ACC is true for 2-complexes K2

which happen to embed in a 3-manifold. Call

such a complex a spine. There is an algorithm,

due to Neuwirth, to decide if a given 2-complex

is a spine.

Theorem: The AC conjecture is true for spines.

proof: Let N3 be a regular neighbourhood in

a manifold containing the contractible K2, so

that N collapses to K. The PC implies N3 is

homeomorphic with the standard 3-ball, and

hence collapsible to a point. This gives the

3-deformation asserted by the ACC:

K2 ↙ N3 ↘ pt



Zeeman conjecture: K2 contractible ⇒ K×I

collapses to a point.

Clearly the ZC implies the ACC, because the

transition K ↙ K×I ↘ pt gives a 3-deformation.

The ZC also implies the PC, by the follow-

ing argument: Suppose that Q3 is a compact,

contractible manifold. Q collapses to a “spine”

K2, also contractible. By ZC, K × I collapses

to a point. Therefore Q×I collapses to a point,

and (being a collapsible 4-manifold) it must be

a 4-ball. Now Q ⊂ ∂(Q× I) ∼= S3 and so Q is a

3-ball.



A converse....

A 2-complex is standard if it is modeled on the

cone upon ∆3
1, the 1-skeleton of a 3-simplex.

Every 3-manifold with nonempty boundary col-

lapses to a standard spine and is determined by

such a spine.

Local structure of a standard complex



Bing’s house with two rooms

A standard spine of the cube

It is contractible, but not collapsible



The igloo

Another contractible, non-collapsible

2-polyhedron



Theorem: (Gillman - R.) The ZC, restricted

to standard spines, is equivalent to the PC.

Key idea of the proof: If K2 is a spine of M3

and has trivial homology groups, then (by an

explicit construction) K× I collapses to a sub-

set homeomorphic to M . If K is contractible,

so is M , and assuming PC, M is a 3-ball, and

so K × I → M → pt verifies the ZC for K.

Corollary: The ZC and ACC are true for stan-

dard spines.



Another well-known problem concerning 2-D

polyhedra, but which seems less connected to

the PC.

Whitehead conjecture: If K2 is a polyhedron

which is aspherical (πn(K) = 0, ∀n ≥ 2), and

L2 is a subpolyhedron, then L is aspherical.

Equivalently, if L2 ⊂ K2 and their universal

covers are L̃ and K̃, then

K̃ contractible ⇒ L̃ contractible.



Group theoretic cousins of the PC ....

First Stallings conjecture: Let Σg = closed

orientable surface of genus g > 1, F1 and F2

free groups of rank g,

η : π1(Σg) → F1 × F2

a surjective homomorphism. Then there is a

simple closed curve in Σg representing a non-

trivial element of ker(h).

Second Stallings conjecture: Let g > 1,

G = 〈x1, y1, . . . , xg, yg | [x1, y1] · · · [xg, yg] = 1〉

F1 and F2 free, rank g and

η : G → F1 × F2

surjective homomorphism. Then η factors through

an essential map G → G1 ? G2, a free product.

Here, essential means that the image of the

map is not conjugate to one of the factors Gi.



Note the FSC is a mixture of algebra and topol-

ogy, whereas the SSC is purely group-theoretic.

Theorem: (Stallings, Jaco) The FSC and SSC

are each equivalent to the PC.

Corollary: The two Stallings conjectures are

true.

The connection between the group theory and

the 3-manifolds is via Heegaard splittings. Ev-

ery closed oriented 3-manifold is the union of

two handlebodies, whose intersection is their

common boundary, Σg. The map η is the

product of the inclusion-induced maps of the

surface into the two handlebodies, at the fun-

damental group level.



Hempel has formulated this in a somewhat dif-

ferent way. Call two group homomorphisms

h1, h2 : G → H equivalent if there is an auto-

morphism α : G → G with h1 ◦ α = h2.

Let

G = 〈x1, y1, . . . , xg, yg | [x1, y1] · · · [xg, yg] = 1〉

and F1 and F2 free groups of rank g as above.

There is an obvious surjective homomorphism

φ : G → F1 × F2

which takes the xi to the generators of F1 and

the yi to the generators of F2.

Theorem: (Hempel) The PC is true if and

only if φ is the only surjection of G to F1×F2,

up to equivalence.

Corollary: Up to equivalence, φ is the unique

surjection G → F1 × F2.



Back to Andrews-Curtis, group theoretic ver-

sion:

Suppose 〈x1, . . . , xn | r1, . . . , rn〉 is a “balanced”

group presentation. (A relation u = v may

represent the relator uv−1.)

Examples: 〈x, y|x, y〉

〈x, y|xpyq, xrys〉, ps− rq = ±1

〈x, y|x−1y2x = y3, y−1x2y = x3〉

〈x, y|x4y3 = y2x2, x6y4 = y3x3〉

〈x, y, z| y−1xy = x2, z−1yz = y2, x−1zx = z2〉

all present the trivial group.



Consider the operations, which do not change

the group presented:

(1) replace ri by its inverse r−1
i ,

(2) replace ri by rirj, i 6= j,

(3) replace ri by grig
−1, where g ∈ F (x1, . . . , xn).

Balanced Andrews-Curtis conjecture: If the

group presented is the trivial group, then the

set r1, . . . , rn may be transformed to x1, . . . , xn

by a finite sequence of these three operations

(and free reduction of the relators).

If true, the BACC implies that any regular

neighbourhood of a contractible 2-dimensional

polyhedron in R5 is a 5-ball.



Consider also the (possibly) weaker:

Andrews-Curtis Conjecture: A balanced pre-

sentation of the trivial group can be reduced

to the empty presentation by (1)-(3) above,

and operation (4) and its inverse:

(4) introduce a new generator xn+1 and relator

rn+1 which coincides with xn+1.

This conjecture is equivalent to the geometric

ACC:

K2 contractible ⇒ K 3-deforms to a point.



The connection here between the group theory

and polyhedra is through the basic construc-

tion of a 2-complex from a group presentation

G = 〈x1, . . . , xm | r1, . . . rn〉

Begin with a bouquet of m circles, one for each

generator.

Sew n disks to this bouquet, the ith disk at-

tached to the bouquet along its boundary circle

by “reading off” the relator ri.



The Klein bottle, the polyhedron

corresponding to

〈x, y |xyx−1y〉

The dunce hat, corresponding to

〈x |x2x−1〉

It is contractible, but not collapsible.



The fundamental group of the resulting poly-

hedron is the group G. If the presentation is

balanced (m = n), and the group G is trivial,

then the polyhedron is contractible.

The Andrews-Curtis operations (1) - (4) on a

group presentation correspond to 3-deformations

of the corresponding polyhedra.



More possible counter-examples to the ACC:

〈x, y, |xn = yn+1, xyx = yxy〉 Akbulut−Kirby

〈x, y, |x = [xp, yq], y = [xr, ys]〉 Gordon

Miller and Schupp: If w = w(x, y) is a word

with zero exponent sum in x:

〈x, y, |x−1ynx = yn+1, x = w〉



The Grigurchuk-Kurchanov conjecture

Consider the free group F2n = 〈a1, . . . , an, b1, . . . bn〉
and Let

β : F2n −→ Fn × Fn

be the homomorphism which takes a1, . . . an to

the generators of the first Fn and b1, . . . , bn to

the generators of the second free group in the

product.

GK conj: Any surjective homomorphism

h : F2n −→ Fn × Fn

is equivalent to β, that is h ◦ α = β for some

automorphism α of F2n.



Theorem: The GK conjecture implies the AC

conjecture.

Note the similarity with Hempel’s group theo-

retic analog of the PC, now known to be true.

It is the same as the GK conjecture, with the

genus n surface group replacing F2n.



Another open question of combinatorial group

theory is the following

Consider a group G with a presentation 〈X|R〉.
Let y be a new generator and r a single new

relator, a word in X ∪ {y}.

Kervaire conjecture: If the group 〈X∪{y}|R∪
{r}〉 is trivial, then G must have been the trivial

group.



In summary, we have discussed conjectures of

geometric topology . . .

• Geometric AC conjecture – still unsolved, but

true for spines of 3-manifolds

• Zeeman’s conjecture – also open in general,

implies both ACC and PC, true for standard

spines

• Whitehead’s conjecture – still unsolved



and group-theoretical conjectures . . .

• Andrews-Curtis conjecture – still open

• Stallings’ two conjectures – equivalent to the

PC, and hence “solved”

• Kervaire’s conjecture – known true for torsion-

free groups

• Uniqueness of surjection φ : π1(Σg) → Fg×Fg

– equivalent to the PC

• Uniqueness of surjection β : F2n → Fn × Fn

– which implies the ACC



Stallings’ “proof” strategy for the PC involved

reducing it to equivalent group-theoretical prob-

lems. Although they did not serve to prove the

PC, it eventually worked in reverse. Perelman’s

proof of the PC verified Stallings’ conjectures!

In “How not to prove the Poincaré conjecture”

(1966), John Stallings concluded with these

words of advice:

“I have committed the sin of falsely proving

the Poincaré conjecture. . . . I was unable to

find flaws in my “proof” for quite a while,

even though the error is very obvious. It was a

psychological problem, a blindness, an excite-

ment, an inhibition of reasoning by an under-

lying fear of being wrong. Techniques leading

to the abandonment of such inhibitions should

be cultivated by every honest mathematician.”


