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Definition 0.1. A graph Γ consists of

• a set V = V (Γ ) of vertices;

• a set E = E(Γ ) of directed edges;

• two functions α : E → V and ω : E → V ;

• a free involution of E, denoted e ↔ ē such that α(e) = ω(ē).

An (undirected) edge is a pair {e, ē}.

Definition 0.2. An edge-path of length 0 in a graph Γ is a vertex. An edge-path of

length n > 0 is a finite sequence γ = (e1, . . . , en) of directed edges of Γ such that

ω(ei) = α(ei+1) for i = 1, . . . , n − 1. The length of an edge-path γ will be denoted by
|γ|.

If γ is an edge-path of length 0, consisting of the vertex v , then we set α(γ) = ω(γ) = v .

If γ = (e1, . . . , en) is an edge-path of positive length we wet α(γ) = α(e1) and ω(γ) =

ω(en). When α(γ) = v1 and ω(γ) = v2 then we say that γ joins v1 to v2.

If γ = (e1, . . . , en) is an edge-path which joins v to w then (ēn, . . . , ē1) is an edge-path

which joins w to v , and it will be denoted γ̄. IF |γ| = 0 then γ̄ = γ.

If γ = (e1, . . . , en) and δ = (f1, . . . , fm) are edge-paths such that ω(γ) = α(δ), then the

composite edge-path (e1, . . . , en, f1, . . . , fm) will be denoted γ ?δ. If |γ| = 0 then γ ?δ = δ
if ω(γ) = α(δ), and δ ? γ = δ if ω(δ) = α(γ).

We say that γ is a geodesic if |γ| = 0 or if γ = (e1, . . . en) where ei 6= ēi+1 for i =
1, . . . , n − 1.

We say that γ is a circuit if γ is a geodesic such that α(γ) = ω(γ) and e1 6= ēn.

Definition 0.3. A graph Γ is connected if any two distinct vertices of Γ are joined by

some edge-path.

Definition 0.4. A graph is called a forest if it contains no circuits. A connected forest is

called a tree.

Date: April 4, 2005.
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1. The tree of words

Let X be a set (of “letters”). Let X̄ be a disjoint set which is in 1 − 1 correspondence
with X. This correspondence determines an involution of X t X̄ which we indicate by
x ↔ x̄ .

Definition 1.1. A word in the alphabet X is a finite sequence w = (x1, . . . , xn) where

xi ∈ X t X̄ for i = 1, . . . , n. The length of w is |w | = n, and the empty sequence is
considered to be a word of length 0. If n > 0 we will write w = x1x2 · · · xn, but the word
of length 0 is denoted by 1. The set of all words in the alphabet X will be denotedW(X).

The word w = x1x2 · · · xn is said to be reduced if xi 6= x̄i+1 for i = 1, . . . , n. (And the
word 1 is considered to be reduced.)

The concatenation operation on words will be denoted by �. If w = x1 · · · xn and v =
y1 · · · ym are two words in the alphabet X then define

w � v = x1 · · · xny1 · · · ym.

Naturally, we also define 1 � w = w � 1 = w .

Next we construct a graph T (X), which will turn out to be a tree, having as vertices the

reduced words in the alphabet X. (The figure below shows the vertices up to length 2 in

the case X = {x, y}.)
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The set of directed edges of T (X) is the set

E = {(w,w � x), (w � x, w) | x ∈ X t X̄ and w � x is reduced }.

The functions α and ω send each pair to its first or second element respectively.

We will think of the directed edges of T (X) as having labels: a directed edge of the form

(w,w �x) has label x and a directed edge of the form (w �x, w) has label x̄ . In particular,
if e has label x then ē has label x̄ .

Proposition 1.2. The graph T (X) is a tree.
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Proof. It is clear that T (X) is connected. If e is a directed edge of T (X) then either

|α(e)| < |ω(e)| or |α(e)| > |ω(e)|. Let us say that e is increasing in the first case and
decreasing in the second. (An edge never joins two vertices of the same length.) From

the construction of T (X) we see that if v is a vertex with |v | > 1 then there is exactly
one increasing edge e with ω(e) = v . In particular, this means that in a geodesic γ it is

not possible for an increasing edge to be followed by a decreasing edge. But any circuit

would have to contain an increasing edge followed by a decreasing edge, so there can be

no circuit in T (X). �

By an automorphism g of a graph G we mean a bijection of V (G) t E(G) that sends
V (G) to V (G) and E(G) to E(G) such that α(g(e)) = g(α(e)) and g(ē) = g(e). The

group of automorphisms of G will be denoted Aut(G).

For each x ∈ X t X̄ there is an automorphism σx of T (X) constructed by “moving the
vertex x̄ to the top”. That is, for a reduced word w , define

σx(w) =

v if w = x̄ � v ,
x � w if x � w is reduced.

Note that σx̄ is the inverse of σx , regarded as a permutation of the vertices of T (X).

To verify that σx extends (in a unique way) to an automorphism of T (X) it suffices to

prove the following;

Lemma 1.3. Let x ∈ X t X̄. The vertices v and w of T (X) are joined by an edge with
label y if and only if the vertices σx(v) and σx(w) are joined by an edge with label y .

Proof. Suppose there is an edge e with label y ∈ XtX̄ such that α(e) = v and ω(e) = w .
We have two cases: either w = v � y or v = w � ȳ , where y ∈ X is the label of e.

Suppose that w = v � y . We have two subcases, according to whether x � v is reduced.
If x � v is not reduced then v = x̄ � u, and σx(v) = u. If u 6= 1 then σx(w) = u � y and
we have (σx(v), σx(w)) = (u, u � y), which is an edge with label y . If u = 1 then y 6= x ,
since v is reduced, so we have σx(w) = y and (σx(v), σx(w)) = (1, y), which is an edge

with label y . In the second subcase, where x � v is reduced, we have σx(v) = x � v and
σx(w) = x � v � y , and (σx(v), σx(w)) = (x � v , x � v � y) is again an edge with label y .

The case v = w � ȳ is similar. �

Definition 1.4. The free group F (X) on the set X is the group of automorphisms of

T (X) generated by {σx | x ∈ X}.

Proposition 1.5. The action of F (X) on T (X) satisfies the following properties:

• The labels of the directed edges are preserved.
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• if an element g of F (X) fixes a vertex or an undirected edge of T (X) then g is

the identity.

Proof. Lemma 1.3 shows that labels are preserved. If g is an automorphism of T (X)

that preserves labels and fixes a vertex v , then g fixes all directed edges that have v as

an endpoint. In particular, a geodesic cannot join a fixed vertex to a non-fixed vertex.

Since T (X) is connected, either every vertex is fixed by g, in which case g is the identity,

or no vertex is fixed by g. If an undirected edge is fixed by an automorphism, but its

endpoints are not fixed, then the two corresponding directed edges are interchanged.

This contradicts the fact that labels are preserved. Therefore a non-identity element of

F (X) cannot fix an undirected edge. �

Corollary 1.6. The free group F (X) is the group of label-preserving automorphisms of

T (X).

1.7. Define a function W(X)→ F (X), as follows

If w = x1 · · · xn then w 7→ σw =̇ σx1 ◦ · · · ◦ σxn .

If w is a reduced word, so that it is a vertex of T (X), then the automorphism σw ∈
Aut(T (X)) sends the vertex 1 to the vertex w . Thus the map w 7→ σw restricts to a
bijection between the set of reduced words in W(X) and the elements of F (X).

Define a symmetric relation ∼ on W (X) by specifying that

u � x � x̄ � v ∼ u � v ,

whenever x ∈ X t X̄ and u, v ∈ W(X). This is not an equivalence relation, since it is
not transitive, but we can consider the the equivalence relation ≈ generated by ∼. In
other words, we define u ≈ v if there exist words u = w0, . . . , wn = v ∈ W(X) such that
wi−1 ∼ wi for i = 1, . . . n.

Corollary 1.8. If u and v are words in W(X) then u ≈ v if and only if σu = σv in
F (X) ⊆ Aut(T (X)).

To summarize, every word in W(X) determines a unique element of F (X), and there is
a 1 − 1 correspondence between elements of F (X) ⊆ Aut(T (X)) and reduced words in
W(X) given by g ↔ g(1). If we think of elements of F (X) as being represented by words
in W(X) then the multiplication operation of F (X) is given by concatenating the words
and cancelling. Any two sequences of cancellation operations must produce the same

reduced word.

Corollary 1.9 (Universal property). Let G be a group. Any function f : X → G extends
to a unique group homomorphism f̂ : F (X)→ G.
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Proof. If w = x1 · · · xn is a word in W(X), then we define f̂ (σw) = f (x1) · · · f (xn). Note
that if w ≈ v then f̂ (σw) = f̂ (σw). Since σw = σv if and only if w ≈ v , this shows that
f̂ is well-defined. �

2. Tree geometry

Tree geometry is so much fun that these facts are best left as exercises.

Exercise 2.1. Any two vertices v1 and v2 of a tree are joined by a unique geodesic.

Definition 2.1. The length of the geodesic joining v to w is the distance from v1 to v2,

denoted d(v1, v2).

Exercise 2.2. If δ is an edge-path from v to w and γ is the geodesic from v to w then

every edge of γ is an edge of δ.

Exercise 2.3. The function d is a metric. In particular, the vertices of a tree form a metric

space with distance function d .

Exercise 2.4. The intersection of two subtrees of a tree is a tree.

Exercise 2.5. If U is a subtree of a tree T and v is any vertex then there is a unique

vertex of U which is closest to v .

Exercise 2.6. If v1 and v2 are two vertices of a tree T then {v | d(v , v1) ≤ d(v , v2)} is a
tree.

Exercise 2.7. The forest obtained by removing one edge of a tree has two components.

3. A characterization of free groups

Lemma 3.1 (Ping-Pong Lemma). Let G be a group acting on a set S. Suppose there

exist

• a set X of generators of G;

• a collection S = {Sg| g ∈ X ∪X−1} of subsets of S; and

• a point p ∈ S − ⋃S
such that

(1) g(p) ∈ Sg for each g ∈ X ∪X−1; and

(2) g(Sh) ⊆ Sg for all h ∈ X ∪X−1 − {g−1}.

Then G ∼= F (X).
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Proof. By the universal property we have a surjective homomorphism φ : F (X)→ G such
that φ(x) = x for all x ∈ X. It suffices to show that if w 6= 1 is a reduced word in W(X)
then φ(σw) 6= 1. To show that an element of G is not the identity we will show that it
doesn’t fix the point p. In fact, we will show by induction that if w = x1 · · · xn is a reduced
word in W(X) and g = φ(σw) then g(p) ∈ Xx1. This follows from the condition (1) in
the case n = 1. For n > 1 we know by induction that if h = σv , where v = x2 · · · xn, then
h(p) ∈ Xx2. Since x2 6= x̄1, we have g(p) = x1(h(p)) ∈ Xx1 by condition (2). �

Definition 3.2. A group G of automorphisms of a tree T acts freely if no non-identity

element of G fixes a vertex or an undirected edge of T .

Lemma 3.3. If G acts freely on a tree T , and if g is a non-identity element of G then

g 6= g−1.

Proof. Suppose 1 6= g ∈ G and g = g−1. Let v be any vertex of T . Consider the geodesic
γ = e1 · · · en joining v to g(v). Since g interchanges the endpoints of γ, and the geodesic
joining two points of a tree is unique, we must have γ(ei) = ēn−i . If n is even then

γ fixes the vertex ω(en/2) = α(e(n/2)+1). If n is even then γ fixes the unoriented edge

(e(n+1)/2, ē(n+1)/2). In either case this is a contradiction to the assumption that G acts

freely. �

Definition 3.4. Suppose that a group G acts on a tree T . A fundamental domain for

G is a subtree D of T such that V (D) contains exactly one vertex from each G-orbit in

V (T ).

Lemma 3.5. If a group G acts freely on a tree T then there is a fundamental domain for

G.

Proof. We first use Zorn’s Lemma to show that there exists a subtree D of T which is

maximal in the family F of all subtrees which contain at most one vertex from each G-
orbit. Any vertex of T is such a subtree of T , so the family is non-empty. Suppose C ⊆ F
is a chain. Let U denote the union of all of the subtrees in C. Clearly U is connected, so
it is a subtree. Suppose that v is a vertex and g is a non-identity element of G such that

v and gv are both contained in U. Then g and gv are both contained in some subtree

C ∈ C, which is impossible since C ∈ F . Thus U ∈ F , so there exists a maximal subtree
in F .

If D does not contain a vertex from each G-orbit then ∪g∈GV (gD) 6= V (T ). Since T
is connected, there exists an edge e such that α(e) ∈ V (g0D) for some g0 ∈ G, but
ω(e) is not contained in V (gD) for any g ∈ G. Let f = g−10 e, so α(f ) ∈ V (D) but
w = ω(f ) 6∈ V (gD) for all g ∈ G. Let E be the subtree obtained by adding the edge f
and the vertex w to D. Since D is maximal, there must exist a non-identity element h
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of G so that E ∩ hE 6= ∅. Since V (hD) ∩ V (D) = ∅, the only vertex of E which could
possibly be contained in the intersection is w . But hw 6∈ V (D), so we must have hw = w .
This is impossible since G acts freely. �

Definition 3.6. Suppose that G acts freely on a tree T and that D is a fundamental

domain for G. The directed edges e of T such that α(e) is a vertex of D, but ω(e) is

not a vertex of D, will be called the boundary edges of D. The set of boundary edges of

D will be denoted ∂D.

Theorem 3.7. A group is free if and only if it acts freely on a tree.

Proof. By construction any free group acts freely on a tree, so we must only prove the

other implication.

Assume that G acts freely on a tree T . Let D be a fundamental domain for G. For

each edge e in ∂D there exists a unique element ge ∈ G such that ω(e) ∈ V (geD). Set
S = {ge | e ∈ ∂D}. If e ∈ ∂D then f = g−1e ē ∈ ∂D, and gf = g−1e . Thus S = S−1.

Next we will show that S generates G. Fix a vertex v of D. Let B ⊆ E(T ) be the union
of the G-orbits of edges in ∂D. For each g ∈ G, let b(g) denote the number of edges in
the geodesic from v to gv which lie in B. Set Gn = {g ∈ G | b(g) = n}. We will show
by induction on n that Gn ⊆ 〈S〉. Observe that G1 = S. Assume that Gn ⊆ 〈S〉 and let
g ∈ Gn+1. Consider a geodesic γ from v to gv . The geodesic γ must contain (exactly)
one edge e of ∂D. Thus γ = γ1 ? γ2 where γ1 contains e and γ2 joins gev to gv . Since

|γ2| = n and since g−1e γ2 joins v to g−1e gv , we have g−1e g ∈ 〈S〉. Since ge ∈ S, it follows
that g ∈ 〈S〉.

We are now ready to apply the ping-pong lemma. By Lemma 3.3, no non-identity element

of G is equal to its inverse. Thus we may write S = X tX−1. For e ∈ ∂D, define Sge to
be the set of all vertices w of T such that the geodesic from v to w contains the edge e.

Set p = v . If e is an edge in ∂D then the geodesic from v to geD contains e, since (e) is

the geodesic from D to geD. Thus condition (1) of the ping-pong lemma is satisfied. To

verify condition (2), let g = ge ∈ XtX−1, and suppose that w ∈ Sh where h = gf 6= g−1e .
This means, in particular that g−1e (ē) 6= f . The edge g−1e (ē) joins g−1e D to D. Consider
the edge-path γ = γ1 ? γ2 ? γ3 where γ1 is the geodesic from g

−1
e (v) to ω(g

−1
e e) ∈ D, γ2

is the geodesic from ω(g−1e e) to α(f ) ∈ D and γ3 is the geodesic from α(f ) to w . Since
γ2 is contained in D while g

−1
e (e) 6= f̄ , it follows that γ is a geodesic joining g−1e v to w .

The geodesic geγ joins v to gew and contains the edge e. This shows that gew ∈ Sge ,
verifying condition (2) of the ping-pong lemma. �

Corollary 3.8 (Nielsen-Schreier Theorem). Any subgroup of a free group is free.
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4. Group presentations

Suppose that G is a group generated by a set X = {x1, . . .} of elements of G. By the uni-
versal property of free groups, the inclusion map from X to G extends to a homomorphism

φ : F (X) → G which is surjective since X generates G. Suppose that R = {r1, . . .} is a
collection of elements of F (X) which normally generate ker φ; that is, suppose that ker φ

is the smallest normal subgroup of G which contains R. Then |X : R| is a presentation
of G. The elements of X are called generators and the elements of R are called relators.

Sometimes the relators are replaced by relations which are equations. The relator r is

replaced by the equation r = 1, or by an equivalent equation. For example, the relator

xyx−1y−1 might be replaced by the relation xy = yx .

Example 4.1. The dihedral group D2n is generated by a rotation r of order n and a

reflection s of order 2 which satisfy the equation srs = r−1. Every element of the

dihedral group can be uniquely written as r is j , where 0 ≤ i ≤ n − 1 and 0 ≤ j ≤ 1. Let
X = {r, s} and let φ : F (X) → D2n denote the surjective homomorphism which extends
the inclusion map of X into D. The relators r n, s2 and srsr are all contained in ker φ.

Thus, if we let N denote the normal subgroup of F (X) which is normally generated by

these three relators, then we have N ≤ ker φ. On the other hand, it is easy to check
that any word in F ({r, s}) is equivalent, modulo N, to a word of the form r is j , where
0 ≤ i ≤ n − 1 and 0 ≤ j ≤ 1. That is, every element of F ({r, s}) can be written as a
product of a word of this form and an element of N. This shows that ker φ ≤ N, so the
dihedral group of order 2n has a presentation

D2n = |s, r : s2, r n, sr sr | = |s, r : s2 = r n = 1, sr s = r−1|.

4.2. Suppose that N is a normal subgroup of F (X). We can then consider the action of

N by label-preserving automorphisms of the tree T (X). There is only one orbit of vertices

under the action of F (X), so the N-orbits of vertices are in one-to-one correspondence

with the cosets of N, i.e. with the elements of the quotient group G = F (X)/N. Since

the action of N preserves labels, the orbits of edges also inherit labels. The orbits of

the vertices and the orbits of the edges can be regarded in a natural way as vertices and

edges of a graph, which is denoted T (X)/N, and is called the Cayley graph of G. The

vertices of the Cayley graph can be identified with the elements of G. The directed edges

of the Cayley graph have labels, which are elements of the generating set X. A vertex g

of T (X)/N is joined to a vertex h by an edge with label x if gx = h, where g, h and x

have been identified with elements of G in the natural way.

Here is a picture of the Cayley graph for D12.
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The Cayley graph of D12

4.3. If G is any subgroup of T (X), not necessarily normal, we may still construct the

quotient graph Γ = T (X)/G. The vertices will correspond to the cosets of G in F (X),

but these cosets will not form a group. The graph does, however, provide a description

of the subgroup G, up to conjugation by an arbitrary element of F (X). (Conjugate

subgroups of F (X) will have isomorphic quotient graphs.)

The fundamental domain D maps injectively into Γ , and the image S is a tree in Γ which

contains every vertex. (Such a tree is called a spanning tree for the graph Γ . The edges

of Γ which are not contained in S are in one-to-one correspondence with a set of free

generators of (some conjugate of) G and their inverses. Moreover, up to conjugation of

the entire subgroup G, one can construct the words that represent these generators using

the labels of the edges of Γ . Fix a base vertex v ∈ V (S). Let e be a directed edge in
Γ which is not contained in S, and let γ1 and γ2 be geodesics from v to α(e) and ω(e)

respectively. Then γ1 ? (e)? γ̄2 is a geodesic which joins v to v . The word that represents

ge is obtained by reading the labels of the directed edges of this geodesic, since this is the

same word that would be obtained by reading the labels of the geodesic from v to gev in

the tree T (X).

x

x
yyy x
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The picture above shows the quotient graph Γ = T ({x, y})/G, where G is the subgroup
of G which is freely generated by the elements xyx−1, xxx , y , and x−1y of F ({x, y}).
Since there are three vertices, one can see that G has index 3 in F ({x, y}). The tree S
is shown in red.

Exercise 4.1. Show that if N is a normal subgroup of F (X) and Γ = T (X)/N then the

quotient group G = F (X)/N acts freely on Γ by label-preserving symmetries.

Exercise 4.2. Show that a finitely generated normal subgroup of a free group must have

finite index.
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