Math 971 Algebraic Topology

April 14, 2005

We have introduced two homologies; simplicial, H_*^{Δ} , which is computationally straightforward, and singular, H_* , whose formal properties we have explored. For Δ -complexes, these homology groups are the same, $H_n^{\Delta}(X) \cong H_n(X)$ for every X. In fact, the isomorphism is induced by the inclusion $C_n^{\Delta}(X) \subseteq C_n(X)$. Note that most of the edifice we built for singular homology holds for simplicial homology, including relative homology (for a sub- Δ -complex A of X), and a SES of chain groups, giving a LES sequence for the pair, $\cdots \to H_n^{\Delta}(A) \to H_n^{\Delta}(X) \to H_n^{\Delta}(X,A) \to H_{n-1}^{\Delta}(A) \to \cdots$

We proceed first by showing that the inclusion induces an isomorphism on k-skeleta, $H_n^{\Delta}(X^{(k)}) \cong H_n(X^{(k)})$, and this goes by induction on k using the $H_{n+1}^{\Delta}(X^{(k)},X^{(k-1)}) \to H_n^{\Delta}(X^{(k-1)}) \to H_n^{\Delta}(X^{(k)}) \to H_n^{\Delta}(X^{(k)},X^{(k-1)}) \to H_{n-1}^{\Delta}(X^{(k-1)})$

Five Lemma applied to the diagram

Five Lemma applied to the diagram
$$\begin{array}{c} \downarrow & \downarrow & \downarrow & \downarrow \\ H_{n+1}(X^{(k)},X^{(k-1)}) \rightarrow H_n(X^{(k-1)}) \rightarrow H_n(X^{(k)}) \rightarrow H_n(X^{(k)},X^{(k-1)}) \rightarrow H_{n-1}(X^{(k-1)}) \\ \end{array}$$
 The second and fifth vertical arrows are, by an inductive hypothesis, isos. The first and fourth vertical arrows are isos because, essentially, we can, in

each case, identify these groups. $H_n(X^{(k)}, X^{(k-1)}) \cong H_n(X^{(k)}/X^{(k-1)}) \cong \widetilde{H}_n(\vee S^k)$ are either 0 (for $n \neq k$) or $\oplus \mathbb{Z}$ (for n = k), one summand for each n-simplex in X. But the same is true for $H_n^{\Delta}(X^{(k)}, X^{(k-1)})$; and for n = k the generators are precisely the n-simplices of X. The inclusion-induced map takes generators to generators, so is an iso. So by the Five Lemma, the middle column is an iso, completing our inductive proof.

Returning to $H_n^{\Delta}(X) \xrightarrow{I_*} H_n(X)$, we wish now to show that this map is an isomorphism. Any $[z] \in H_n(X)$ is represented by a cycle $z = \sum a_i \sigma_i$ for $\sigma_i : \Delta^n \to X$. But each $\sigma_i(\Delta^n)$ is a compact subset of X, and so meets only finitely-many cells of X. This is true for every singular simplex, and so there is a k for which all of the simplices map into $X^{(k)}$, and so we may treat $z \in C_n(X^{(k)})$. Thought of in this way, it is still a cycle, and so $[z] \in H_n(X^{(k)}) \cong H_n^{\Delta}(X^{(k)})$ so there is a $z'inC_n^{\Delta}(X^{(k)})$ and a $w \in C_{n+1}(X^{(k)})$ with $i_\#z'-z=\partial w$. But thinking of $z'inC_n^{\Delta}(X)$ and $w \in C_{n+1}(X)$, we have the same equality, so $[z'] \in H_n^{\Delta}(X)$ and $i_*[z'] = [z]$. So i_* is surjective. If $i_*([z]) = 0$, then the cycle $z = \sum a_i \sigma_i$ is a sum of characteristic maps of n-simplices of X, and so can be thought of as an element of $C_n^{\Delta}(X^n)$. Being 0 in $H_n(X)$, $z = \partial w$ for some $w \in C_{n+1}(X)$. But as before, $w \in C_n(X^n)$ for some r, and so thought of as an element of the image of the isomorphism $i_*: H_n^{\Delta}(X^{(r)}) \to H_n(X^{(r)}), i_*([z]) = 0$, so [z] = 0. So $z = \partial u$ for some $u \in C_{n+1}^{\Delta}(X^r) \subseteq C_{n+1}^{\Delta}(X)$. So [z] = 0 in $H_n^{\Delta}(X)$. Consequently, simplicial and singular homology groups are isomorphic.

This implies the topological invariance of the Euler characteristic of a space X. If X is a Δ -complex made up of a finite number of simplices, then we can count the number m_i of i-simplices in the Δ -complex structure of X. The Euler characteristic of X is then defined to be the alternating sum $\chi(X) = \sum_{i=0}^{\infty} (-1)^i m_i$. Now, as a topological space, X can be given many different Δ -complex structures, and $\chi(X)$ is a priori a number which depends on the structure, not just on X. But once we note that m_i = the rank of the (simplicial) chain group $C_i^{\Delta}(X)$ (there is one generator for each i-simplex), we find that $\chi(X) = \sum_{i=0}^{N} (-1)^i \operatorname{rank}(C_i(X))$, and then the following result from homological algebra establishes the topological invariance of this number:

Proposition: If $\cdots 0 \to C_n \to \cdots \to C_1 \to C_0 \to 0$ in a chain complex with all finite rank, then $\sum_{i=0}^{n} (-1)^i \operatorname{rank}(C_i) = \sum_{i=0}^{n} (-1)^i \operatorname{rank}(H_i(\mathcal{C}))$.

The proof follows from the facts that since $H_i(\mathcal{C}) = \ker \partial_i / \operatorname{im} \partial_{i+1}$, $z_i = \operatorname{rank}(\ker \partial_i) = \operatorname{rank}(H_i(\mathcal{C})) + \operatorname{rank}(\operatorname{im} \partial_{i+1}) = h_i + b_{i+1}$, so $h_i = z_i - b_{i+1}$, and that (by Noether) $\operatorname{im}(\partial_i) \cong C_i / \ker(\partial_i)$, so $c_i = \operatorname{rank}(C_i) = z_i + b_i$. We therefore have

 $\sum_{i=0}^{n} (-1)^{i} \operatorname{rank}(H_{i}(\mathcal{C}) = \sum_{i=0}^{n} (-1)^{i} h_{i} = \sum_{i=0}^{n} (-1)^{i} (z_{i} - b_{i+1}) = \sum_{i=0}^{n} (-1)^{i} z_{i} - \sum_{i=0}^{n} (-1)^{i} b_{i+1} = \sum_{i=0}^{n} (-1)^{i} z_{i} + \sum_{i=0}^{n} (-1)^{i} b_{i} = \sum_{i=0}^{n} (-1)^{i} (z_{i} + b_{i}) = \sum_{i=0}^{n} (-1)^{i} \operatorname{rank}(C_{i})$ as desired. Consequently, $\chi(X) = \sum_{i=0}^{N} (-1)^{i} \operatorname{rank}(C_{i}^{\Delta}(X)) = \sum_{i=0}^{N} (-1)^{i} \operatorname{rank}(H_{i}^{\Delta}(X)) = \sum_{i=0}^{N} (-1)^{i} \operatorname{rank}(H_{i}(X))$, which is an invariant of X, since the singular homology groups are!

The fact that this number has two different interpretations leads to some non-trivial results. First, it tells us that the Euler characteristic calculation is independent of how we express a space X as a Δ -complex. χ is also actually invariant under homotopy equivalence, since the homology groups are; so homotopy equivalent spaces have the same Euler χ . Consequently, all contractible spaces, for example, must have Euler characteristic = 1.

Next, by the lifting criterion, if $p: \widetilde{X} \to X$ is a k-fold covering space of a Δ -complex X, then \widetilde{X} can be given a Δ -complex structure with k times as many i-simplices as X, for every i (lift the characteristic maps of the simplices of X....). So $\chi(\widetilde{X}) = k \cdot \chi(X)$. This give a necessary condition for one space to be a covering of another; it's Euler χ must be a multiple of the other. For example, from our homology calculations, it follows that for a closed orientable surface F_q of genus g, $\chi(F_q) = 2 - 2g$. So a k-fold covering of F_q will have Euler χ equal to k(2-2g) = 2k - 2kg = 2 - 2(kg - k + 1), and so is a surface of genus kg - k + 1. [The converse, that a surface with this genus k-fold covers F_q , can be established by building the coverings directly.] Consequently, F_5 is a 2-fold covering of F_3 , so there is a subgroup of index 2 of $\pi_1(F_3)$ isomorphic to $\pi_1(F_5)$, but F_6 is not a finite-sheeted cover of F_3 , because $-4 \not | -10$. It is also not an inifinite-sheeted covering, because their total spaces are non-compact... Consequently, $\pi_1(F_6)$ is not isomorphic to a subgroup of $\pi_1(F_3)$.