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We have so far introduced two homologies; simplicial, H∆∗ , whose computation “only” required some
linear algebra, and singular, H∗, which is formally less difficult to work with, and which, you may
suspect by now, is also becoming less difficult to compute... For ∆-complexes, these homology groups
are the same, H∆

n (X) ∼= Hn(X) for every X . In fact, the isomorphism is induced by the inclusion
C∆

n (X) ⊆ Cn(X). And we have now assembled all of the tools necessary to prove this. Or almost;
we need to note that most of the edifice we have built for singular homology could have been built for
simplicial homology, including relative homology (for a sub-∆-complex A of X), and a SES of chain
groups, giving a LES sequence for the pair,

· · · → H∆
n (A) → H∆

n (X) → H∆
n (X, A) → H∆

n−1(A) → · · ·
The proof of the isomorphism between the two homologies proceeds by first showing that the inclusion
induces an isomorphism on k-skeleta, H∆

n (X(k)) ∼= Hn(X(k)), and this goes by induction on k using the
Five Lemma applied to the diagram
H∆

n+1(X
(k), X(k−1)) → H∆

n (X(k−1)) → H∆
n (X(k)) → H∆

n (X(k), X(k−1)) → H∆
n−1(X

(k−1))
↓ ↓ ↓ ↓ ↓

Hn+1(X(k), X(k−1)) → Hn(X(k−1)) → Hn(X(k)) → Hn(X(k), X(k−1)) → Hn−1(X(k−1))
The second and fifth vertical arrows are, by an inductive hypothesis, isomorphisms. The first and
fourth vertical arrows are isomorphisms because, essentially, we can, in each case, identify these groups.
Hn(X(k), X(k−1)) ∼= Hn(X(k)/X(k−1)) ∼= H̃n(∨Sk) are either 0 (for n �= k) or ⊕Z (for n = k), one
summand for each n-simplex in X . But the same is true for H∆

n (X(k), X(k−1)); and for n = k the
generators are precisely the n-simplices of X . The inclusion-induced map takes generators to generators,
so is an isomorphism. So by the Five Lemma, the middle rows are also isomorphisms, completing
our inductive proof.

Returning to H∆
n (X) I∗→Hn(X), we wish now to show that this map is an isomorphism. Any [z] ∈ Hn(X)

is represented by a cycle z =
∑

aiσi for σi : ∆n → X . But each σi(∆n) is a compact subset of X , and
so meets only finitely-many cells of X . This is true for every singular simplex, and so there is a k for
which all of the simplices map into X(k), and so we may treat z ∈ Cn(X(k). Thought of in this way, it
is still a cycle, and so [z] ∈ Hn(X(k)) ∼= H∆

n (X(k)) so there is a z′inC∆
n (X(k)) and a w ∈ Cn+1(X(k))

with i#z′ − z = ∂w. But thinking of z′inC∆
n (X) and w ∈ Cn+1(X), we have the same equality, so

[z′] ∈ H∆
n (X) and i∗[z′] = [z] . So i∗ is surjective. If i∗([z]) = 0, then the cycle z =

∑
aiσi is a sum

of characteristic maps of n-simplices of X , and so can be thought of as an element of C∆
n (Xn)) . Being

0 in Hn(X), z = ∂w for some w ∈ Cn+1(X) . But as before, w ∈ Cn(Xr)) for some r, and so thought
of as an element of the image of the isomorphism i∗ : H∆

n (X(r)) → Hn(X(r)), i∗([z]) = 0, so [z] = 0 .
So z = ∂u for some u ∈ C∆

n+1(X
r)) ⊆ C∆

n+1(X) . So [z] = 0 in H∆
n (X). Consequently, simplicial and

singular homology groups are isomorphic.

One consequence of this fact is that we can prove the topological invariance of the Euler characteristic
of a space X . If X is a ∆-complex made up of a finite number of simplices, then we can count the number
mi of i-simplices in the ∆-complex structure of X . The Euler characteristic of X is then defined to be

the alternating sum χ(X) =
∞∑

i=0

(−1)imi . Now, as a topological space, X can be given many different

∆-complex structures, and χ(X) is a priori a number which depends on the structure, not just on X .
But once we note that mi = the rank of the (simplicial) chain group C∆

i (X) (there is one generator
for each i-simplex), we find that χ(X) =

∑N
i=0(−1)i rank(Ci(X)), and then the following result from

homological algebra establishes the topological invariance of this number:

Proposition: If · · · 0 → Cn → · · · → C1 → C0 → 0 is a chain complex, with every chain group having
finite rank, then∑n

i=0(−1)i rank(Ci) =
∑n

i=0(−1)i rank(Hi(C) .



The proof follows from cleverly applying the fact that since Hi(C) =ker∂i/im∂i+1, zi = rank(ker∂i) =
rank(Hi(C)) + rank(im∂i+1) = hi+bi+1, so hi = zi−bi+1, together with the fact that since (by Noether)
im(∂i) ∼= Ci/ker(∂i), so ci = rank(Ci) = zi + bi. We therefore have∑n

i=0(−1)i rank(Hi(C) =
∑n

i=0(−1)ihi =
∑n

i=0(−1)i(zi − bi+1) =
∑n

i=0(−1)izi −
∑n

i=0(−1)ibi+1 =∑n
i=0(−1)izi +

∑n
i=0(−1)ibi =

∑n
i=0(−1)i(zi + bi) =

∑n
i=0(−1)i rank(Ci) as desired.

Consequently, χ(X) =
∑N

i=0(−1)i rank(C∆
i (X)) =

∑N
i=0(−1)i rank(H∆

i (X)) =
∑N

i=0(−1)i rank(Hi(X)),
which is an invariant of X , since the singular homology groups are!

The fact that this number has two different interpretations leads to some non-trivial results. First, it tells
us that the Euler charactistic calculation is independent of how we express a space X as a ∆-complex.
χ is also actually invariant under homotopy equivalence, since the homology groups are; so homotopy
equivalent spaces have the same Euler chi. Consequently, all contractible spaces, for example, must have
Euler characteristic = 1.
Next, by the lifting criterion, if p : X̃ → X is a k-fold covering space of a ∆-complex X , then X̃ can be
given a ∆-complex structure with k times as many i-simplices as X , for every i (lift the characteristic
maps of the simplices of X ....). So χ(X̃) = k · χ(X) . This give a necessary condition for one space to
be a covering of another; it’s Euler χ must be a multiple of the other. For example, from our homology
calculations, it follows that for a closed orientable surface Fg of genus g, χ(Fg) = 2 − 2g. So a k-fold
covering of Fg will have Euler χ equal to k(2− 2g) = 2k − 2kg = 2− 2(kg − k + 1) , and so is a surface
of genus kg − k + 1 . [The converse, that a surface with this genus k-fold covers Fg, can be established
by building the coverings directly.] Consequently, F5 is a 2-fold covering of F3, so there is a subgroup of
index 2 of π1(F3) isomorphic to π1(F5), but F6 is not a finite-sheeted cover of F3, because −4 � | − 10 .
[It is also not an inifinite-sheeted covering, because their total spaces are non-compact...] Consequently,
π1(F6) is not isomorphic to a subgroup of π1(F3) .


