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Homology on “small” chains = singular homology: If {Uα} is an open cover of X, then the inclusions in : CU
n (X)→ Cn(X) induce isomorphisms

on homology. This leads to the Mayer-Vietoris Sequence: If X = U ∪ V is the union of two open sets, then the short exact sequences
0→ Cn(U ∩ V)→ Cn(U)⊕ Cn(V)→ C

{U,V}
n (X)→ 0 , together with the isomorphism above, give the long exact sequence

· · · → Hn(U ∩ V)(iU∗,−iV∗)→ Hn(U)⊕Hn(V)jU∗+jV∗→ Hn(X)
∂→Hn−1(U ∩ V)→ · · ·

And just like Seifert - van Kampen, we can replace open sets by sets A,B having neigborhoods which deformation retract to them, and whose intersection
deformation retracts to A ∩B. For example, subcomplexes A,B ⊆ X of a CW-complex, with A ∪B = X have homology satisfying a long exact sequence

· · · → Hn(A ∩B)(iA∗,−iB∗)→ Hn(A)⊕Hn(B)
jA∗+jB∗→ Hn(X)

∂→Hn−1(A ∩B)→ · · ·
And this is also true for reduced homology; we just augment the chain complexes used above with the short exact sequence 0→ Z → Z ⊕ Z → Z → 0
, where the first non-trivial map is a �→ (a,−a) and the second is (a, b) �→ a+ b .
And then we can do some meaningful calculations! An n-sphere Sn is the union Sn+ ∪Sn− of its upper and lower hemispheres, each of which is contractible,
and have intersection Sn+ ∩ Sn− = Sn−1

0 the equatorial (n− 1)-sphere. So Mayer-Vietoris gives us the exact sequence
· · · → H̃k(Sn+) ⊕ H̃k(Sn−) → H̃k(Sn) → H̃k−1(Sn−1

0 ) → H̃k−1(Sn+) ⊕ H̃k−1(Sn−) → · · · , i.e, 0 → H̃k(Sn) → H̃k−1(Sn−1
0 ) → 0 i.e.,

H̃k(Sn) ∼= H̃k−1(Sn−1) for every k and n. So by induction, H̃k(Sn) ∼= H̃k−n(S0) ∼= Z, if k = n and = 0 otherwise.
The 2-torus T 2 = S1 × S1 can be thought of as the union of two copies of an annulus S1 × I, glued together along their (pair of) boundary circles. The
resulting LES is H̃2(S1×I)⊕ H̃2(S1×I)→ H̃2(T 2)→ H̃1(S1

∐
S1)→ H̃1(S1×I)⊕ H̃1(S1×I)→ H̃1(T 2)→ H̃0(S1

∐
S1)→ H̃0(S1×I)⊕ H̃0(S1×I)

which renders as 0→ H̃2(T 2)→ Z ⊕ Z
ϕ→Z ⊕ Z → H̃1(T 2)→ Z → 0

We need to know more about the map Z ⊕ Z → Z ⊕ Z. The first group has generators consisting of the generators of each of the S1 path components of
A ∩ B (represented by the singular 1-simplex wrapping exactly once around the circle), and are each sent to a generator for each of the S1 × I. Since ϕ
was chosen to be (iA∗,−iB∗), we find that ϕ has matrix (1,1 ; -1,-1) , which has image spanned by [1, 1]T and kernel spanned by [1, 1]T . From exactness
and a few Noether isomorphism theorems, we can cut up our long exact sequence above as

0→ H̃2(T 2)→ kerϕ→ 0 and 0→ (Z ⊕ Z)/im ϕ→ H̃1(T 2)→ Z → 0
(since the first map is onto its image, and the second to last map is injective, once we mod out by its kernel). The first implies that H̃2(T 2) ∼= Z, and the
second (since our basis for the image extends to a basis for Z

2) becomes 0→ Z → H̃1(T 2)→ Z → 0 . This implies that H̃2(T 2) ∼= Z
2, because of the

Fact: if 0 → K
ϕ→G

ψ→H → 0 is exact and there is a homomorphism ρ : H → G with ψρ =Id , then G ∼= K × H . The proof consists of defining
σ : K ×H → G by σ(k, h) = ϕ(k) + ρ(h). As the sum of two homomorphisms it is a homomorphism. If σ(k, h) = ϕ(k) + ρ(h) = 0 then 0 = ψσ(k, h) =
ψϕ(k) + ψρ(h) = 0 + h = h, so 0 = σ(k, h) = ϕ(k) + ρ(h) = ϕ(k), so k = 0 by the injectivity of ϕ. So (k, h) = (0, 0) . For surjectivity, given g ∈ G, let
h = ψ(g); then ψ(g − ρh) = ψg − ψρh = h− h = 0, so there is a k ∈ K with ϕk = g − ρh , so σ(k, h) = ϕk + ρh = g.
[There are several results like this; the conclusion says that the SES splits or is split exact; the map ρ provides one sufficient condition for splitness

Consequently, H̃i(T 2) = Z for i = 2, Z
2 for i = 1, and 0 for all other i (since T 2 is path-connected, and for i ≥ 3, our LES reads → H̃i(T 2)→ 0 ).

The computation for the Klein bottle K2 is similar; it can be expressed as a pair of annuli S1 × I glued along their boundaries, but one of the gluings
is by a reflection. The associated inclusion-induced homomorphism, in exactly one case, is −Id, not Id; and so the resulting matrix, for one choice of
generators, is (1, 1 ; −1, 1) . After row and column reducton, this becomes (1, 0 ; 0, 2) . This matrix has no kernel, so, using the same cutting up process,
0 → H̃2(K2) → kerϕ → 0 and 0 → (Z ⊕ Z)/imϕ → H̃1(K2) → Z → 0 becomes 0 → H̃2(K2) → 0 and 0 → Z2 → H̃1(K2) → Z → 0 so
H̃2(K2) = 0 and H̃1(K2) ∼= Z ⊕ Z2 . As before, all other (reduced) homology groups are 0.
For the real projective plane P 2, we can express it as a Möbius band M with a disk D glued to its boundary. Their intersection is a circle S1. Writing
the Mayer-Vietoris sequence in this situation gives 0→ H̃2(P 2)→ Z → 0⊕ Z → H̃1(P 2)→ 0 .

Again we need to know more about the middle map i∗ : H̃1(S1) → H̃1(M) in order to determine the unknown groups. M deformation retracts to its
central circle, and the generator for H̃1(∂M), wrapping once around ∂M , is sent to a map wrapping around twice, and so represents 2×generator ∈ H̃1(M)
. So the middle map is injective, with image 2Z . And so H̃2(P 2) = 0, and H̃(P 2) ∼= Z/im(i∗) ∼= Z2 . All other groups, as before, are 0.


