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The main tool we will use turns a family of short exact sequences of chain maps between three chain complexes into a single long exact
homology sequence. Given chain complexes A = (An, ∂) , B = (Bn, ∂′) , and C = (Cn, ∂′′) and short exact sequences of chain maps (i.e.,
∂′in = in∂ , ∂′′jn = jn∂′)
0 → An

in

→Bn
jn

→Cn → 0 there is a general result which provides us with a long exact sequence
· · · ∂

→Hn(A) i∗
→Hn(B) j∗

→Hn(C) ∂
→Hn−1(A) i∗

→ · · ·
Most of the work is in defining the “boundary” map ∂. Given an element [z] ∈ Hn(C), a representative z ∈ Cn satisfies ∂′′(z) = 0. But jn

is onto, so there is a b ∈ Bn with jn(b) = z, Then in−1∂
′(b) = ∂′′jn(b) = 0, so ∂′(b) ∈ ker(jn−1 =im(an−1). So there is an a ∈ An−1 with

in−1(a) = ∂′(b) . But then in−2∂(a) = ∂′in−1(a) = ∂′∂′(b) = 0, so, since in−2 is injective, ∂a = 0, so a ∈ Zn−1(A), and so represents a
homology class [a] ∈ Hn(A). We define ∂([z]) = [a] .
To show that this is well-defined, we need to show that the class [a] we end up with is independent of the choices made along the way. The choice
of a was not really a choice; in−1 is, by assumption, injective. For b, if jn(b) = z = jn(b′), then jn(b−b′) = 0, so b−b′ = in(w) for some w ∈ An.
Then ∂′b′ = ∂′b−∂′in(w) = ∂′b− in−1∂(w), so choosing a′ = a−∂(w) we have in−1(a′) = ∂′(b′). But then [a′] = [a−∂w] = [a]− [delw] = [a].
Finally, there is actually a choice of z ; if [z] = [z′], then z′ = z + ∂′′w for some w ∈ Cn+1; but then choosing b′, w′ with jn(b′) = z′ ,
jn+1(w′) = w , we have
∂′′w = ∂′′jn+1(w′) = jn∂′(w′) , so
z′ = z + ∂′′w = jn(b + ∂′w′), so we may choose b′ = b + ∂′w′ (since the result is independent of this choice!), then since ∂′b′ = ∂′b everything
continues the same.

Now to exactness! We need to show three (types of) equalities, which means six containments. Three (image contained in kernel) are shown
basically by showing that compositions of two consecutive homomorphisms are trivial. jnin = 0 immediately implies j∗i∗ = 0 . From the
definition of ∂, i∗∂[z] = [in(a)] = [∂′(b)] = 0, and ∂j∗[z] = ∂[jn(z)] = [a], where in−1(a) = ∂′(z) = 0, so a = 0 (since in−1 is injective), so
[a] = 0.
For the opposite containments, if j∗[z] = [jn(z)] = 0, then jn(z) = ∂′′w for some w. Since jn+1 is onto, w = jn+1(b) for some b. Then
jn(z − ∂′b) = ∂′′w− ∂′′jn+1b = 0, so z = ∂′b = in(a) for some a, so i∗[a] = [z − ∂′b] = [z] . So ker j∗ ⊆imi∗ . If i∗[z] = 0, then in(z) = ∂′w for
some w ∈ Bn+1. Setting c = jn+1(w), then ∂′′c = jn∂′w − inin(Z) = 0, so [c] ∈ hn+1(C), and computing ∂[c] we find that we can choose w
for the first step and z for the second step, so ∂[c] = [z] . So ker jn ⊆im∂ . Finally, if ∂[z] = 0, then z = jn(b) for some b, and ∂′b = in−1(a)
with [a] = 0, i.e., a = ∂w for some w. So ∂′b = in−1∂w = ∂′inw But then ∂′(b − inw) = 0, and jn(b − inw) = z − 0 = z, so z ∈im(jn), so
[z] ∈im(j∗) . So ker ∂ ⊆im(jn) . Which finishes the proof!

Now all we need are some new chain complexes. To start, we build the singular chain complex of a pair (X, A) , i.e., of a space X and a
subspace A ⊆ X . Since as abelian groups we can think of Cn(A) as a subgroup of Cn(X) (under the injective homomorphism induced by the
inclusion i : A → X) we can set Cn(X, A) = Cn(X)/Cn(A) . Since the boundary map ∂n : Cn(X) → Cn−1(X) satisfies ∂n(Cn(A) ⊆ Cn−1(A)
(the boundary of a map into A maps into A), we get an induced boundary map ∂n : Cn(X, A) → Cn−1(X, A) . These groups and maps
(Cn(X, A), ∂n) form a chain complex, whose homology groups are the singluar relative homology groups of the pair (X, A) .


