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First: A discussion of the relative merits of ∆-complexes versus simplicial complexes. Then:

The orientation on a simplex of X : Each simplex σn is determined by a map f : {v0, . . . , vn} → X(0); an orientation on σn is an (equivalence
class of) the ordered (n + 1)-tuple (f(v0), . . . f(vn)) = (V0, . . . , Vn). Another ordering of the same vertices represents the same orientation if
there is an even permutation taking the entries of the first (n + 1)-tuple to the second. This should be thought of as a generalization of the
right-hand rule for R

3, interpreted as orienting the vertices of a 3-simplex. Note that there are precisely two orientations on a simplex.

Now to define homology! We start by defining n-chains; these are (finite) formal linear combinations of the (oriented!) n-simplices of X ,
where −σ is interpreted as σ with the opposite (i.e., other) orientation. Adding formal linear combinations formally, we get the n-th chain
group Cn(X) = {∑ nασα : σα an oriented n-simplex in X} . We next define a boundary operator ∂ : Cn(X) → Cn−1(X), whose image will be
the (n− 1)-chains that are the “boundaries” of n-chains. The idea is that the boundary of a 2-simplex, for example, should be a “sum” of its
three faces (since they do make up the boundary of the simplex), but we need to take into account their orientations, in order to be getting
the correct sum. Thinking of the orientation on a 1-simplex [v, w] as an arrow pointing from v to w, we are led to believe that the boundary of
a 2-simplex [u, v, w] should be [u, v]+ [v, w]+ [w, u]. Similarly, the boundary of [u, v], on reflection, should be [v]− [u], to distinguish the head
of the arrow (the + side) from the tail (the − side). On the basis of these examples, trying to find a consistent formula, one might eventually
be led to the following formulation. We define the boundary on the basis elements σα = σ of Cn(X) as ∂σ =

∑
(−1)iσ|

[v0,... ,v̂i,... ,vn]
, where

σ : [v0, . . . , vn] → X is the characteristic map of σα . ∂σ is therefore an alternating sum of the faces of σ. We then extend the definition by
linearity to all of Cn(X). When a notation indicating dimension is needed, we write ∂ = ∂n . We define ∂0 = 0.

This definition, it utrns out, is cooked up to make the maxim “boundaries have no boundary” true; that is, δn−1 ◦ δn = 0, the 0 map. This
is because, for any simplex σ = [v0, . . . vn],

δ ◦ δ(σ) = δ(
n∑

i=0

(−1)iσ|
[v0,... ,v̂i,... ,vn]

) = (
∑
j<i

(−1)j(−1)iσ|
[v0,... ,v̂j ,... ,v̂i,... ,vn]

) + (
∑
j>i

(−1)j−1(−1)iσ|
[v0,... ,v̂i,... ,v̂j ,... ,vn]

)

The distinction between the two pieces is that in the second part, vj is actually the (j − 1)-st vertex of the face. Switching the roles of i and
j in the second sum, we find that the two are negatives of one another, so they sum to 0, as desired.

And this little calculation is all that it takes to define homology groups! What this tells us is that im(δn+1) ⊆ ker(δn) for every n.
ker(δn) = Zn(X) are called the n-cycles of X ; they are the n-chains with 0 (i.e., empty) boundary. They form a (free) abelian subgroup of
Cn(X). im(δn+1) = Bn(X) are the n-boundaries of X ; they are, of course, the boundaries of (n + 1)-chains in X . The n-th homology group
of X , Hn(X) is the quotient Zn(X)/Bn(X) ; it is an abelian group. This consists, essentially, of the n-cycles that are not boundaries; i.e.,
they represent the “holes” in X .

A key observation is that the boundary maps δn are linear, that is, they are homomorphisms between the free abelian groups δn : Cn(X) →
Cn−1(X). Consequently, they can be expressed as (integer-valued) matrices ∆n. Row reducing ∆n (over the integers!) allows us to find a
basis v1, . . . , vk for Zn(X) (clearing denomenators to get vectors over Z). Then since ∆n∆n+1 = 0, the columns of ∆n+1 are in the kernel
of ∆n, so can be expressed as linear combinations of the vi . These combinations can be determined by row reducing the augmented matrix

(v1 · · · vk|∆n+1) . This will row reduce to
(

I | C
0 | 0

)
, and C basically describes the boundaries Bn(X) in terms of the basis v1, . . . , vk .

The homology group Hn(X) is then the cokernel of C, i.e., Z
k/imC . Note that C will have integer entries, since we know that the columns

of ∆n+1 can be expressed as integer linear combinations of the vi, and, being a basis, there is only one such expression.


