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Homology theory: Fundamental groups are a remarkably powerful tool for studying spaces; they capture a great deal of the global structure
of a space, and so they are very good a distinguishing between homotopy-inequivalent spaces. In theory! But in practice, they suffer from
the fact that deciding whether two groups are isomorphic or not is, in general, undecideable! Homology theory is designed to get around this
deficiency; the theory builds (a sequence of) abelian groups Hi(X) from a topological space. And deciding whether or not two abelian groups,
at least if you’re given a presentation for them, is, in the end, a matter of fairly routine linear algebra. Mostly because of the Fundamental
Theorem of Finitely-generated Abelian groups; each such has a unique representation as Z

m ⊕ Zm1 ⊕ · · · ⊕ Zmn
with mi+1|mi for every i .

There are also “higher” homotopy groups beyond the fundamental group π1, (hence the name pi-one); elements are homtopy classes, rel
boundary, of based maps (In, ∂In) → (X, x0). Multiplication is again by concatenation. But unlike π1, where we have a chance to compute
it via Seifert-van Kampen, nobody, for example knows what all of the homotopy groups πn(S2 are (except that nearly all of them are non-
trivial!). Like π1, it describes, essentially, maps of Sn into X which don’t extend to maps of Dn+1, i.e., it turns the “n-dimensional holes” of
X into a group.

Homology theory does the exact same thing, counting n-dimensional holes. In the end we will find it to be extremely computable; but it will
require building a fair bit of machinery before it will become so transparent to calculate. But the short version is that the homology groups
compute “cycles mod boundaries”, that is, n-dimesional objects/subsets that have no boundary (in the appropriate sense) modulo objects
that are the boundary of (n+ 1)-dimensional ones. There are, in fact, probably as many ways to define homology groups as there are people
actively working in the field; we will focus on two, simplicial homology and singular homology. The first is quick to define and compute, but
hard to show is an invariant! The second is quick to see is an invariant, but, on the face of it, hard to compute! Luckily, for spaces where
they are both defined, they are isomorphic. So, in the end, we get an invariant that is quick to compute. Of course, so is the invariant “4”;
but this one will be a bit more informative....

First, simplicial homology. This is a sequence of groups defined for spaces for which they are easiest to define, which Hatcher calls ∆-complexes.
Basically, they are spaces defined by gluing simplices together using nice enough maps. More precisely, the standard n-simplex ∆n is the set
of points {(x1, . . . xn+1) ∈ R

n+1 :
∑

xi = 1, xi ≥ 0 for all i}. This can also be expressed as convex linear combinations (literally, that’s the
conditions on the xi’s) of the points ei = (0, . . . , 0, 1, 0, . . . , 0), the vertices of the standard simplex. More generally, an n-simplex is the set
[v0, . . . vn] of convex linear combinations of points v0, . . . , vn ∈ R

k for which v1 − v0, . . . , vn − v0 are linearly independent. Any bijection from
the vertices of the standard simplex to the points v0, . . . , vn extends (linearly) to a homeomorphism of the simplices. The n + 1 faces of a
simplex, each sitting opposite a vertex vi, are obtained by setting the corresponding coefficient xi to 0. Each forms an (n− 1)-simplex, which
we denote [v0, . . . , vi−1, vi+1, . . . , vn] or [v0, . . . , v̂i, . . . , vn] . A ∆-complex X is a cell complex obtained by gluing simplices together, but we
insist on an extra condition: the restriction of the attaching map to any face is equal to a (lower-dimensional) cell. As before, we use the
weak topology on the space; a set is open iff it’s inverse image under the induced map of a cell into the complex is open. Each n-cell comes
equipped with a (continuous) map σ : ∆n → X , which is one-to-one on its interior, whose restriction to the boundary is the attaching map,
and whose restriction to each face is the associated map for that (n − 1)-simplex. We will typically blur the distinction between the map σ
(called the characteristic map of the simplex) and its image, and denote the image by σ (or σn), when this will cause no confusion, and call
σ an n-simplex in X . When we feel the need for the distinction, we will use en for the image and σn for the map.
For example, taking our standard, identifications of the sides of a rectangle, cell structure for the 2-torus, and cutting the rectangle into two
triangles (= 2-simplices) along a diagonal, we obtain a ∆-structure with 2 2-simplices, 3 1-simplices, and 1 0-simplex. A genus g surface can
be built, by cutting the 2g-gon into triangles, with g + 1 2-simplices, 3g 1-simplices, and 1 0-simplex.


