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Every space it X the quotient of its universal cover (if it has one!) by its fundamental group G = π1(X, x0), realized as the group of deck
transformations. And the quotient map is the covering projection. So X ∼= X̃/G . In general, a quotient of a space Z by a group action G
need not be a covering map; the action must be properly discontinuous, which means that for every point z ∈ Z, there is a neighborhood U of
x so that g �= 1⇒ U ∩gU = ∅ (the group action carries sufficiently small neighborhoods off of themselves). The evenly covered neighborhoods
provide these for the universal cover. And conversely, the quotient of a space by a p.d. group action is a covering space.

But! Given G = π1(X, x0) and its action on a universal cover X̃, we can, instead of quotienting out by G, quotient out by any subgroup H

of G, to build XH = X̃/H. This is a space with fundamental group H, having X̃ as universal covering. And since the quotient (covering)
map pG : X̃ → X = X̃/G factors through X̃/H, we get an induced map pH : X̃/H → X , which is a covering map; open sets with trivial
inclusion-induced homomorphism lift homeomorphically to X̃, hence homeomorphically to X̃/H; taking lifts to each point inverse of x ∈ X
verifies the evenly covering property for pH . So every subgroup of G is the fundamental group of a covering of X .
We can further refine this to give the Galois correspondence. Two covering spaces p1 : X1 → X , p2 : X2 → X are isomorphic if there is
a homeomorphism h : X1 → X2 with p1 = p2 ◦ h. Choosing basepoints x1, x2 mapping to x0 ∈ X , this implies that, if h(x1) = x2, then
p1∗(π1(X1, x1)) = p2∗(h∗(π1(X1, x1))) = p2∗(π1(X2, x2)) . On the other hand, our homeomorphism h need not take our chosen basepoints to
one another; if h(x1) = x3, then p1∗(π1(X1, x1)) = p2∗(π1(X2, x3)). But p2∗(π1(X2, x2)) and p2∗(π1(X2, x3)) are isomorphic, via a change of
basepoint isomorphism η̂ , where η is a path in X2 from x2 to x3. But such a path projects to X has a loop at x0, and since the change of
basepoint isomorphism is by “conjugating” by the path η, the resulting groups p2∗(π1(X2, x2)) and p2∗(π1(X2, x3)) are conjugate, by p2 ◦ η
. So, without reference to basepoints, isomorphic coverings give, under projection, conjugate subgroups of π1(X, x0) . But conversely, given
covering spaces X1, X2 whose subgroups p1∗(π1(X1, x1)) and p2∗(π1(X2, x2)) are conjugate, lifting a loop γ representing the conjugating
element to a loop γ̃ in X2 starting at x2 gives, as its terminal endpoint, a point x3 with p1∗(π1(X1, x1)) = p2∗(π1(X2, x3)) (since it conjugates
back!), and so, by the lifting criterion, there is an isomorphism h : (X1, x1) → (X2, x3). So conjugate subgroups give isomorphic coverings.
Thus, for a path-connected, locally path-connected, semi-locally simply-connected space X , the image of the induced homomorphism on π1

gives a one-to-one correspondence between [isomorphism classes of (connected) coverings of X ] and [conjugacy classes of subgroups of π1(X)].

So, for example, if you have a group G that you are interested in, you know of a (nice enough) space X with π1(X) ∼= G, and you know
enough about the covering of X , then you can gain information about the subgroup structure of G. For example, and in some respects as
motivation for all of this machinery!, a free group F (Σ) is π1 of a bouquet of circles X . Any covering space X̃ of X is a union of vertices and
edges, so is a graph. Collapsing a maximal tree to a point, X̃ is 
 a bouquet of circles, so has free π1. So, every subgroup of a free group is
free. (That is a lot shorter than the original, group-theoretic, proof...)


