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Every space it X the quotient of its universal cover (if it has one!) by its fundamental group G = m (X, zg), realized as the group of deck
transformations. And the quotient map is the covering projection. So X = X /G . In general, a quotient of a space Z by a group action G
need not be a covering map; the action must be properly discontinuous, which means that for every point z € Z, there is a neighborhood U of
x so that g # 1 = UNgld = () (the group action carries sufficiently small neighborhoods off of themselves). The evenly covered neighborhoods
provide these for the universal cover. And conversely, the quotient of a space by a p.d. group action is a covering space.

But! Given G = m1(X, :1:0) and its action on a universal cover X we can, instead of quotienting out by G, quotient out by any subgroup H
of G, to build Xy = =X /H. This is a space with fundamental group H, having X as universal covering. And since the quotient (covering)
map pg : X—>X=X /G factors through X /H, we get an induced map pgy : X /H — X, which is a covering map; open sets with trivial
inclusion-induced homomorphism lift homeomorphically to X hence homeomorphically to X /H; taking lifts to each point inverse of z € X
verifies the evenly covering property for py . So every subgroup of G is the fundamental group of a covering of X.

We can further refine this to give the Galois correspondence. Two covering spaces p1 : X1 — X |, po : Xo — X are isomorphic if there is
a homeomorphism h : X; — X with p; = ps o h. Choosing basepoints x1, xo mapping to o € X, this implies that, if h(z;) = x2, then
P1x(m1(X1,21)) = pos(hu(m1(X71,21))) = p2s(m1(X2,22)) . On the other hand, our homeomorphism A need not take our chosen basepoints to
one another; if h(x1) = x3, then p1.(m (X1, 21)) = pasx(m1 (X2, 23)). But pos(m (X2, z2)) and po.(m1(X2,x3)) are isomorphic, via a change of
basepoint isomorphism 77 , where 7 is a path in X5 from x5 to x3. But such a path projects to X has a loop at x(, and since the change of
basepoint isomorphism is by “conjugating” by the path 7, the resulting groups po.(m1 (X2, z2)) and po.(71(X2, x3)) are conjugate, by ps o n
. So, without reference to basepoints, isomorphic coverings give, under projection, conjugate subgroups of 71 (X, xg) . But conversely, given
covering spaces X1, Xo whose subgroups pi.(m1(X1,21)) and pa.(m1 (X2, z2)) are conjugate, lifting a loop 7 representing the conjugating
element to a loop 7 in X starting at zo gives, as its terminal endpoint, a point x3 with p1. (71 (X1, 21)) = pas«(m1 (X2, z3)) (since it conjugates
back!), and so, by the lifting criterion, there is an isomorphism h : (X1,21) — (X2, 23). So conjugate subgroups give isomorphic coverings.
Thus, for a path-connected, locally path-connected, semi-locally simply-connected space X, the image of the induced homomorphism on
gives a one-to-one correspondence between [isomorphism classes of (connected) coverings of X| and [conjugacy classes of subgroups of 71 (X)].

So, for example, if you have a group G that you are interested in, you know of a (nice enough) space X with m1(X) = G, and you know
enough about the covering of X, then you can gain information about the subgroup structure of G. For example, and in some respects as
motivation for all of this machinery!, a free group F(X) is 1 of a bouquet of circles X. Any covering space X of X is a union of vertices and
edges, so is a graph. Collapsing a maximal tree to a point, Xis~a bouquet of circles, so has free m;. So, every subgroup of a free group is
free. (That is a lot shorter than the original, group-theoretic, proof...)



