Math 971 Algebraic Topology February 17, 2005 The number of sheets of a covering map can also be determined from the fundamental groups $H = p_*(\pi_1(\widetilde{X}, \widetilde{x}_0)) \subseteq \pi_1(X, x_0) = G$: **Proposition:** If X and \widetilde{X} are path-connected, then the number of sheets of a covering map equals the index of H in G. To see this, choose loops $\{\gamma_{\alpha}\}$ representing representatives $\{g_{\alpha}\}$ of each of the (right) cosets of H in G. Lifting them to loops based at \widetilde{x}_0 , they will have distinct endpoints; if $\widetilde{\gamma}_1(1) = \widetilde{\gamma}_2(1)$, then by uniqueness of lifts, $\gamma_1 * \overline{\gamma}_2$ lifts to $\widetilde{\gamma}_1 * \overline{\widetilde{\gamma}}_2$, so it lifts to a loop, so $\gamma_1 * \overline{\gamma}_2$ gives an element of $p_*(\pi_1(\widetilde{X}, \widetilde{x}_0))$, so $g_1 = g_2$. Conversely, every point in $p^{-1}(x_0)$ is the end of a lift; we can construct a path $\widetilde{\gamma}$ from \widetilde{x}_0 to any such point y, giving a loop $\gamma = p \circ \widetilde{\gamma}$ representing an element $g \in \pi_1(X, x_0)$. But then $g = hg_{\alpha}$ for some $h \in H$ and a, so γ is homotopic rel endpoints to $\eta * \gamma_{\alpha}$ for some loop η representing h. Lifting these, based at \widetilde{x}_0 , then by homotopy lifting, $\widetilde{\gamma}$ is homotopic rel endpoints to $\widetilde{\eta}$, which is a loop, followed by the lift $\widetilde{\gamma}_{\alpha}$ of γ_{α} starting at \widetilde{x}_0 . So $\widetilde{\gamma}(1) = \widetilde{\gamma}_{\alpha}(1)$. Therefore, lifts of representatives of coset representatives of H in G give a 1-to-1 correspondence, given by $\widetilde{\gamma}(1)$, with $p^{-1}(x_0)$. The path lifting property (because $\pi([0,1],0) = \{1\}$) is actually a special case of a more general **lifting criterion**: If $p:(\widetilde{X},\widetilde{x}_0) \to (X,x_0)$ is a covering map, and $f:(Y,y_0) \to (X,x_0)$ is a map, where Y is path-connected and locally path-connected, then there is a lift $\widetilde{f}:(Y,y_0) \to (\widetilde{X},\widetilde{x}_0)$ of f (i.e., $f=p\circ\widetilde{f}$) $\Leftrightarrow f_*(\pi_1(Y,y_0))\subseteq p_*(\pi_1(\widetilde{X},\widetilde{x}_0))$. Furthermore, two lifts of f which agree at a single point are equal. If the lift exists, then $f=p\circ \widetilde{f}$ implies $f_*=p_*\circ \widetilde{f}_*$, so $f_*(\pi_1(Y,y_0))=p_*(\widetilde{f}_*(\pi_1(Y,y_0)))\subseteq p_*(\pi_1(\widetilde{X},\widetilde{x}_0))$, as desired. Conversely, if $f_*(\pi_1(Y,y_0))\subseteq p_*(\pi_1(\widetilde{X},\widetilde{x}_0))$, we will use path lifting to build the lift. Given $y\in Y$, choose a path γ in Y from y_0 to y and use path lifting in X to lift the path $f\circ \gamma$ to a path $\widetilde{f}\circ \gamma$ with $\widetilde{f}\circ \gamma(0)=\widetilde{x}_0$. Then define $\widetilde{f}(y)=\widetilde{f}\circ \gamma(1)$. If we show that this is well-defined and continuous, it is our required lift, since $(p\circ \widetilde{f})(y)=p(\widetilde{f}(y))=p(\widetilde{f}\circ \gamma(1))=p\circ \widetilde{f}\circ \gamma(1)=(f\circ \gamma)(1)=f(\gamma(1))=f(y)$. But if η is any other path from y_0 to y, then $\gamma*\overline{\eta}$ is a loop in Y, so $f\circ (\gamma*\overline{\eta})=(f\circ \gamma)*\overline{(f\circ \eta)}$ is a loop in X representing an element of $f_*(\pi_1(Y,y_0))\subseteq p_*(\pi_1(\widetilde{X},\widetilde{x}_0))$, and so lifts to a loop in \widetilde{X} based at \widetilde{x}_0 . Consequently, $f\circ \gamma$ and $f\circ \eta$ lift to paths starting at \widetilde{x}_0 with the same value at 1. So \widetilde{f} is well-defined. For continuity, we use the evenly covered property of p. Given $y\in Y$, and a neighborhood $\widetilde{\mathcal{U}}$ of $\widetilde{f}(y)$ in \widetilde{X} , we wish to find a nbhd \mathcal{V} of y with $\widetilde{f}(\mathcal{V})\subseteq \widetilde{\mathcal{U}}$. Choosing an evenly covered neighborhood \mathcal{U}_y for f(y), take the sheet $\widetilde{\mathcal{U}}_y$ over \mathcal{U}_y which contains $\widetilde{f}(y)$, and set $\mathcal{W}=\widetilde{\mathcal{U}}\cap\widetilde{\mathcal{U}}_y$. This is open in \widetilde{X} , and p is a homeo from this set to the open set $p(\mathcal{W})\subseteq X$. Setting $\mathcal{V}'=f^{-1}(p(\mathcal{W})$ we get an open set containing y, and so it contains a path-connected open set \mathcal{V} containing y. Then for every point $z\in \mathcal{V}$ we build a path γ from γ 0 to γ 0 by concatenating a path from γ 0 to γ 0 to γ 0 to γ 0 to γ 0. So γ 0 if γ 0 is built by lifting paths, which is unique, the last statement of the proposition follows. Universal covering spaces: As we shall see, a particularly important covering space to identify is one which is simply connected. First: such a covering is essentially unique. If X is locally path-connected, and has two connected, simply connected coverings $p_1: X_1 \to X$ and $p_2: X_2 \to X$, then choosing basepoints $x_i, i = 0, 1, 2$, since $p_{1*}(\pi_1(X_1, x_1)) = p_{2*}(\pi_1(X_2, x_2)) = \{1\} \subseteq \pi_1(X, x_0)$, the lifting criterion with p_1, p_2 playing the role of f, in turn, gives us maps $\tilde{p}_1: (X_1, x_1) \to (X_2, x_2)$ and $\tilde{p}_2: (X_2, x_2) \to (X_1, x_1)$ with $p_2 \circ \tilde{p}_1 = p_1$ and $p_1 \circ \tilde{p}_2 = p_2$. Consequently, $p_2 \circ \tilde{p}_1 \circ \tilde{p}_2 = p_1 \circ \tilde{p}_2 = p_2$ and similarly, $p_1 \circ \tilde{p}_2 \circ \tilde{p}_1 = p_1$. So $\tilde{p}_1 \circ \tilde{p}_2: (X_2, x_2) \to (X_2, x_2)$, for example, is a lift of p_2 to the covering map p_2 . But so is the identity map! By uniqueness, $\tilde{p}_1 \circ \tilde{p}_2 = Id$. Similarly, $\tilde{p}_2 \circ \tilde{p}_1 = Id$. So (X_1, x_1) and (X_2, x_2) are homeomorphic. So a space can have only one connected, simply-connected covering space. It is known as the *universal covering* of X. Not every (locall path-connected) space X has a universal covering; a (further) necessary condition is that X be semi-locally simply connected (S-LSC). The idea is that If $p: \widetilde{X} \to X$ is the universal cover, then for every point $x \in X$, we have an evenly-covered neighborhood \mathcal{U} of x. The inclusion $i: \mathcal{U} \to X$, by definition, lifts to \widetilde{X} , so $i_*(\pi_1(\mathcal{U}, x)) \subseteq p_*(\pi_1(\widetilde{X}, \widetilde{x}) = \{1\}$, so i_* is the trivial map. Consequently, every loop in \mathcal{U} is null-homotopic in X. This is S-LSC; every point has a neighborhood whose inclusion-induced homomorphism is trivial. Not all spaces have this property; the most famous is the Hawaiian earrings $X = \bigcup_n \{x \in \mathbb{R}^2 : ||x - (1/n, 0)|| = 1/n\}$. The point (0,0) has no such neighborhood.