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Some computations:

Gluing on a 2-disk: If X is a topological space and f : ∂D
2 → X is continuous, then we can construct

the quotient space Z = (X
∐

D
2)/{x ∼ f(x) : x ∈ ∂D

2}, the result of gluing D
2 to X along f . We can

use Seifert - van Kampen to compute π1 of the resulting space, although if we wish to be careful with
basepoints x0 (e.g., the image of f might not contain x0, and/or we may wish to glue several disks on, in
remote parts of X), we should also include a rectangle R, the mapping cylinder of a path γ running from
f(1, 0) to x0, glued to D

2 along the arc from (1/2, 0) to (1, 0) (see figure). This space Z+ deformation
retracts to Z, but it is technically simpler to do our calculations with the basepoint y0 lying above x0.
If we write D1 = {x ∈ D

2 : ||x|| < 1} ∪ (R \ X) and D2 = {x ∈ D
2 : ||x|| > 1/3} ∪R , then we can write

Z+ = D+ ∪ (X ∪ D2) = X1 ∪ X2. But since X1 � ∗ , X2 � X (it is essentially the mapping cylinder of
the maps f and γ ) and X1 ∩ X2 = {x ∈ D

2 : 1/3 < ||x|| < 1} ∩ (R \ X) ∼ S1, we find that
π1(Z, y0) ∼= π1(X2, y0) ∗Z {1} = π1(X2)/ < Z >N∼= π1(X2)/ < [δ ∗ γ ∗ f ∗ γ ∗ δ] >N

If we then use δ as a path for a change of basepoint isomorphism, and then a homotopy equivalence
from X2 to X (fixing x0), we have, in terms of group presentations, if π1(X, x0) =< Σ|R > , then
π1(Z) =< Σ|R ∪ {[γ ∗ f ∗ γ]} > . So the effect of gluing on a 2-disk on the fundamental group is to add
a new relator, namely the word represented by the attaching map (adjusting for basepoint). All of this
applies equally well to attaching several 2-disks; each adds a new relator.
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The inherent complications above derived from needing open sets can be legislated away, by introducing
additional hypotheses:

Theorem: If X = X1 ∪ X2 is a union of closed sets X1, X2, with A = X1 ∩ X2 path-connected, and
if X1, X2 have open neighborhood U1,U2 so that U1,U2,U1 ∩ U2 deformation retract onto X1, X2, A
respectively, then π1(X) ∼= π1(X1) ∗π1(A) π1(X2) as before.

The hypotheses are satisfied, for example, if X1.X2 are subcomplexes of the cell complex X .

This in turn opens up huge possibilities for the computation of π1(X). For example, for cell complexes, we
can inductively compute π1 by starting with the 1-skeleton, with free fundamental group, and attaching
the 2-cells one by one, which each add a relator to the presentation of π1(X) . [Exercise: (Hatcher,
p.53, # 6) Attaching n-cells, for n ≥ 3, has no effect on π1.] For example, the 2-sphere S2 can be thought
of as a 2-disk with a 2-disk attached, along a circle, and so has π1(S2) ∼= {1}Z{1} = {1} . We can also
compute the fundamental group of any compact surface:

The real projective plane RP 2 is the quotient of the 2-sphere S2 by the antipodal map x 	→ −x; it can
also be thought of as the upper hemisphere, with identification only along the boundary. This in turn
can be interpreted as a 2-disk glued to a circle, whose boundary wraps around the circle twice. So
π1(RP 2) ∼=< a|a2 >∼= Z2 = Z/2Z . A surface F of genus 2 can be given a cell structure with 1 0-cell,
4 1-cells, and 1 2-cell, as in the figure, as in the first of the figures below. The fundamental group of
the 1-skeleton is therefore free of rank 4, and π1(F ) has a presentation with 4 generators and 1 relator.
Reading the attaching map from the figure, the presentation is < a, b, c, d | [a, b][c, d] > .
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Giving it a different cell structure, as in the second figure, with 2 0-cells, 6 1-cells, and 2 2-cells, after
choosing a maximal tree, we can read off the two relators from the 2-cells to arrive at a different
presentation π1(F ) =< a, b, c, d, e | aba−1eb−1, cde−1c−1d−1 > . A posteriori, these two presentations
describe isomorphic groups.

Using the same technology, we can also see that, in general, any group is the fundamental group of some
2-complex X ; starting with a presentation G =< Σ|R >, build X by starting with a bouquet of |Σ|
circles, and attach |R| 2-disks along loops which represent each of the generators of R. (This works just
as well for infinite sets Σ and/or R; essentially the same proofs as above apply.)


