
Homology and homotopy groups: There are connections between homology
groups and the fundamental (and higher) homotopy groups, provided by what is
known as the Hurewicz map H : πn(X, x0) → Hn(X) . For n = 1 (higher n are
similar) the idea is that elements of π1(X) are loops, which can be thought of as
maps γ : S1 → X (or more precisely, mapping into the path component contain-
ing x0), inducing a map γ∗ : Z = H1(S1) → H1(X) . We define H([γ]) = γ∗(1)
. Because homotopic maps give the same induced map on homology, this really is
well-defined map on homotopy classes, i.e. from π1(X) to H1(X). [A different view:
a loop γ : (I, ∂I) → (X, x0) defines a singular 1-chain which, being a loop, has zero
boundary, so is a 1-cycle. Since based homotopic maps give homologous chains (es-
sentially by the same homotopy invariance property above), we get a well-defined
map π1(X, x0) → H1(X).
Since as 1-chains, the concatenation γ ∗δ of two loops is homologous to the sum γ +δ
- the map K : I × I → X given by K(s, t) = (γ ∗ δ)(s), after crushing the left and
right vertical boundaries to points, can be thought of as a singular 2-simplex with
boundary γ + δ − (γ ∗ δ) - the map H is a homomorphism.



When X is path-connected, this map H : π1(X) → H1(X) is onto . [When it
isn’t it maps onto the summand of H1(X) corresponding to the path component
containing our chosen basepoint.] To see this, note that any cycle z ∈ Z1(X) can
be represented as a sum of singular 1-simplices

∑
σ1

i , i.e. we can (by reversing the
orientations on simplices to make coefficient positive, and then writing a multiple
of a simplex as a sum of simplices) assume all coefficients in our sum are 1. Then
0 = ∂z =

∑
(σ1

i (0, 1)− σ1
i (1, 0)) means that, starting with any positive term, we can

match it with a negative term to cancel that term, which is paired with a postive term,
having a matching negative term, etc., until the initial positive term is cancelled. This
sub-chain represents a collection of paths which concatenate to a loop, so z = (this
loop) + (the remaining terms) . Induction implies that z can be written as a sum of
(sums of paths forming loops), which is (as above) homologous to the sum of loops.
Choosing paths from the start of these loops to our chosen basepoint (which is the
only place where we use path connectedness, we can concatenate the based loops
γ ∗ σ ∗ γ to a single based loop η, which under H is sent to a chain homologous to z.
So H[η] = [z] .



Since H1(X) is abelian (and π1(X) need not be), the kernel of H contains the com-
mutator subgroup [π1(X), π1(X)] . We now show that, if X is path connected, H
induces an isomorphism H1(X) ∼= π1(X)/[π1(X), π1(X)] . To show this, it remains
to show that ker(H) ⊆ [π1(X), π1(X)] . Or put differently, the ineduced map from
π1(X)ab = π1(X)/[π1(X), π1(X)] (i.e., π1(X), written using additive notation) to
H1(X) is injective. So suppose [γ] ∈ π1(X) and, thought of as a singular 1-simplex,
γ = ∂w for some 2-simplex w =

∑
aiσ

2
i . As before, we may assume that all ai = 1,

by reversing orientation and writing multiples as sums. By adding “tails” from each
image of a vertex of each σ2

i to our chosen basepoint x0, we may assume that the
image of every face of ∆2, under the σi , is a loop at x0 (by essentially replacing
each σi with a τi which first collapses little triangle at each vertex to arcs, maps the
resulting central triangle via σi, and the arcs via the paths).

Once we have made this slight alteration, the equation γ = ∂w =
n∑

i=1

2∑

j=0

∂jσi = 0

makes sense (and is true) in both (C1(X) hence Z1(X) hence) H1(X) and π1(X)ab,
the first essentially by definition and the second because all of the ∂jσi are loops at
x0 and, in π1(X), (∂0σi)∂1σi(∂2σi) is null-homotopic, so is trivial in π1(X). Written
additively, this means that in π1(X)ab , ∂0σi − ∂1σi + ∂2σi = 0. So γ = 0 in π1(X)ab

, as desired.



The Hurewicz map H : π1(X) → H1(X) induces, when X is path-connected, an
isomorphism from π1(X)/[π1(X), π1(X)] to H1(X) . This result can be used in two
ways; knowing a (presentation for) π1(X) allows us to compute H1(X), by writing
the relators additively, giving H1(X) as the free abelian group on the generators,
modulo the kernel of the “presentation matrix” given by the resulting linear equa-
tions. Conversely, knowing H1(X) provides information about π1(X). For example,
a calculation on the way to invariance of domain implied that for every knot K in
S3 (i.e., the image of an embedding h : S1 ↪→ S3), H1(S3 \ K) ∼= Z . This implies
that the abelianization of GK = π1(S3 \K) (i.e., the largest abelian quotient of GK)
is Z. But this in turn implies that for every integer n ≥ 2, there is a unique surjec-
tive homomorphism GK → Zn, since such a homomorphism must factor through the
abelianization, and there is exactly one surjective homomorphism Z → Zn ! Con-
sequently, there is a unique (normal) subroup (the kernel of this homomorphism)
Kn ⊆ GK with quotient Zn . Using the Galois correspondence, there is a (unique)
covering space Xn of X = S3 \ K corresponding to Kn, called the n-fold cyclic cov-
ering of K . This space is determined by K and n, and so its homology groups are
determined by the same data. And even though homology cannot distinguish between
two knot complements, K, K ′, it might be the case that homology can distinguish
between their cyclic coverings. Consequently, if H1(Xn) �∼= H1(X ′

n), then K and
K ′ have non-homeomorphic complement, and so represent “different” embeddings,
hence different knots. In practice, one can compute presentations for π1(Xn) (in
several different ways), and so one can compute H1(Xn), providing an effective way
to use homology to distinguish knots! This approach was ultimately formalized (by
Alexander) into a polynomial invariant of knots, known as the Alexander polynomial.



Computing the homology of the cyclic coverings can be done in several ways. The
Reidemeister-Schreier method will allow one to compute a presentation for the kernel
of a homomorphism ϕ : G → H, given a presentation of G and a transversal of the
map, which is a representative of each coset of G modulo the kernel. Abelianizing this
will give homology computation. Another approach uses Seifert surfaces, orientable
surfaces with ∂Σ = K, to cut S3\K open along. Writing S3\K = (S3\N(Σ))∪N(Σ)
allows us to use Mayer-Vietoris to compute homology. But the cyclic covering spaces
can be built by “unwinding” this view of S3 \ K; instead of gluing the two ends of
N(K) to the same S3 \ N(Σ), we can take n copies of S3 \ N(Σ) and glue them
together in a circle. Mayer-Vietoris again tells us how to compute the homology of
the resulting space. Details may be found on the accompanying pages taken from
Rolfsen’s “Knots and Links”.


