
Invariance of Domain: If U ⊆ R
n and f : U → R

n is continuous and injective,
then f(U) ⊆ R

n is open.

We will approach this through the Brouwer-Jordan Separation Theorem: an
embedded (n−1)-sphere in R

n separates R
n into two path components. And for this

we need to do a slightly unusual homology calculation:

For k < n and h : Ik → Sn an embedding of a k-cube in to the n-sphere,
H̃i(Sn \ h(Ik)) = 0 for all i.

Here I = [−1, 1] . The proof proceeds by induction on k. For k = 0, Sn \h(Ik) ∼= R
n,

and the result follows. Now suppose the result is true for all embeddings of C = Ik−1,
but is false for some embedding h : Ik → Sn and some i. Then if we divide the cube
along its last coordinate, say, as Ik−1 × [−1, 0] = C × [−1, 0] and C × [0, 1], we can
set A = Sn \ h(C × [−1, 0]), B = Sn \ h(C × [0, 1]), A ∪ B = Sn \ h(C × {0}), and
A ∩ B = Sn \ h(Ik) . These sets are all open, since the image under h of the various
sets is compact, hence closed. By hypothesis, A ∪ B = Sn \ h(C × {0}) has trivial
reduced homology, while A ∩ B = Sn \ h(Ik) has non-trivial reduced homology in
some dimension i. Then the Mayer-Vietoris sequence

· · · → H̃i+1(A ∪ B) → H̃i(A ∩ B) → H̃i(A) ⊕ H̃i(B) → H̃i(A ∪ B) → · · ·
reads 0 → H̃i(A ∩ B) → H̃i(A) ⊕ H̃i(B) → 0 so H̃i(A ∩ B) ∼= H̃i(A) ⊕ H̃i(B) ,
so at least one of the groups on the right must be non-trivial, as well. WOLOG
H̃i(B) = H̃(Sn \h(C× [0, 1])) �= 0. Even more, choosing (once and for all) a non-zero
element [z] ∈ H̃I(A∩B), snce its image in the direct sum is non-zero, it’s coordinate
in (say) H̃i(B) is non-zero.



So we’ve shown how we can throw away half of the cube without losing a (chosen)
non-zero homology element. Now we continue inductively, cutting C × [0, 1] in two
along the last coordinate as C × [0, 1/2], C × [1/2, 1] and repeat the same argument.
We fnd that H̃i(Sn \ h(C × [a, b])) �= 0, and [z] maps to a non-zero element under
the inclusion-induced homomorphism.. Continuing inductively, we find a sequence of
nested intervals In = [an, bn] ⊇ [an+1, bn+1] whose lengths tend to zero (so an, bn →
x0 ∈ I as n → ∞), and injective inclusion-induced maps

0 �= H̃i(Sn \ h(In) → · · · → H̃i(Sn \ h(C × In) → H̃i(Sn \ h(C × In+1)
all of which send a certain non-zero element [z] ∈ H̃i(Sn\h(In) to a non-zero element,
and all of which have an inclusion-induced map to H̃i(Sn \ h(C × {x0}) = 0. So
there is a non-trivial element [z] ∈ H̃i(Sn \ h(In) which remains non-zero in all
H̃i(Sn \ h(C × In)), but is zero in H̃i(Sn \ h(C × {x0}). Consequently, z = ∂w for
some chain w =

∑
ajσ

i+1
j ∈ Ci+1(Sn\h(C×{x0})). Each singular simplex, however,

is a map σi+1
j : ∆i+1 → Sn \ h(C × {x0}), and so has compact image. But the sets

Sn \ h(C × In) form a nested open cover of Sn \ h(C × {x0}), and so of σi+1
j (∆i+1),

and so there is an nj with σi+1
j (∆i+1) ⊆ Sn \h(C×Inj ) . Then setting N =max{nj},

we have σi+1
j : ∆i+1 → Sn \ h(C × IN ) for every j, so w ∈ Ci+1(Sn \ h(C × IN ),

so 0 = [z] ∈ H̃i(Sn \ h(C × IN ), a contradiction. So H̃i(Sn \ h(Ik)) = 0, and our
inductive step is proved.



One immediate consequence of this is that if h : Sk → Sn is an embedding of the
k-sphere into the n-sphere, then thinking of Sk as the union of its upper and lower
hemispheres, Dk

+, Dk
−, each of which is homeomorphic to Ik, we have Dk

+ ∩ Dk
− =

Sk−1, the equatorial (k − 1)-sphere, and so by Mayer-Vietoris we have

· · · → H̃i+1(Sn \ h(Dk
−)) ⊕ H̃i+1(Sn \ h(Dk

+) → H̃i+1(Sn \ h(Sk−1)) → H̃i(Sn \
h(Sk)) →

H̃i(Sn \ h(Dk
−)) ⊕ H̃i(Sn \ h(Dk

+) → · · ·
i.e., H̃i(Sn \ h(Sk)) ∼= H̃i+1(Sn \ h(Sk−1)) ∼= · · · ∼= H̃i+k(Sn \ h(S0)) ∼= H̃i+k(Sn−1)
, since S0 = 2 points, and so Sn \ h(S0) ∼= Sn−1 ×R � Sn−1. So H̃i(Sn \ h(Sk)) = 0
unless i + k = n − 1 (i.e., i = n − k − 1), when it is Z.

In particular, H̃0(Sn \ h(Sn−1)) = Z, so we have the Jordan-Brouwer Separation
Theorem: every embedded Sn−1 in Sn has two complementary path-components
A, B . With a little work, one can show that A∩B = h(Sn−1) , so the (n−1)-sphere
is the frontier of each complementary component. [Removing a point from Sn to get
R

n does not change the conclusion (for n > 1); a point does not disconnect an open
subset of Sn.]

When n = 2, the Jordan Curve Theorem (as it is then called) has the additional
consequence that the closure of each complementary region is a compact 2-disk, each
having the embedded circle h(S1) as its boundary. This stronger result does not
extend to higher dimensions, without putting extra restrictions on the embedding.
This was shown by Alexander (shortly after publishing an incorrect proof without
restrictions) for n = 3; these examples are known as the Alexander horned spheres.



To prove Invariance of Domain, let U ⊆ R
n ⊆ Sn be an open set, and

f : U → R
n ↪→ Sn be injective and continuous. It suffices to show, for every x ∈ U ,

that there is an open neighborhood V with f(x) ⊆ V ⊆ f(U) . Since U is open, there
is an open ball Bn centered at x whose closure Dn is contained in U . f is then an
embedding of ∂Dn = Sn−1 into Sn, and of Dn ∼= In into Sn. By our calculations
above, Sn \f(Sn−1) has two path components A, B; being an open set and contained
in a locally path-connected space, these are also the connected components of the
complement. But our calculations above also show that Sn\f(Dn) is path-connected,
hence connected, and f(Bn), being the image of a connected set, is connected. Since
f(Bn) ∪ (Sn \ f(Dn)) = Sn \ f(Sn−1) = A ∪ B, it follows that f(Bn) = A and
Sn \f(Dn) = B (or vice versa). In particular, f(Bn) is open, forming an open subset
of f(U) containing f(x), as desired.

Invariance of Domain in turn implies the “other” invariance of domain; if
f : R

n → R
m is continuous and injective, then n ≤ m, since if not, then composition of

f with the inclusion i : R
m → R

n, i(x1, . . . , xm) = (x1, . . . , xm, 0, . . . , 0) is injective
and continuous with non-open image (it lies in a hyperplane in R

n), a contradiction.

This also gives the more elementary: if R
n ∼= R

m, via h, then n = m . Another proof:
by composing with a translation, we may assume that h(0) = 0, and then we have
(Rn, Rn \ 0) ∼= (Rm, Rm \ 0), which gives

H̃i(Sn−1) ∼= Hi+1(Dn, ∂D
n) ∼= Hi+1(Dn, Dn \ 0) ∼= Hi+1(Rn, Rn \ 0) ∼= Hi+1(Rm, Rm \ 0)

∼= Hi+1(Dm, Dm \ 0) ∼= Hi+1(Dm, ∂D
m) ∼= H̃i(Sm−1)

Setting i = n − 1 gives the result, since H̃n−1(Sm−1) ∼= Z implies n − 1 = m − 1 .


