
Homology theory: Fundamental groups are a remarkably powerful tool for studying
spaces; they capture a great deal of the global structure of a space, and so they are
very good a detecting between homotopy-inequivalent spaces. In theory! But in
practice, they suffer from the fact that deciding whether two groups are isomorphic
or not is, in general, undecideable....

Homology theory is designed to get around this deficiency; the theory, by design,
builds (a sequence of) abelian groups Hi(X) from a topological space. And deciding
whether or not two abelian groups are isomorphic, at least if you’re given a presenta-
tion for them, is, in the end, a matter of fairly routine linear algebra. Mostly because
of the Fundamental Theorem of Finitely-generated Abelian groups; each such has a
unique representation as Z

m ⊕ Zm1 ⊕ · · · ⊕ Zmn
with mi+1|mi for every i .

There are also “higher” homotopy groups beyond the fundamental group π1, (hence
the name pi-one); elements are homotopy classes, rel boundary, of based maps
(In, ∂In) → (X, x0). Multiplication is again by concatenation. But unlike π1, where
we have a chance to compute it via Seifert-van Kampen, nobody, for example knows
what all of the homotopy groups πn(S2) are (except that nearly all of them are non-
trivial!). Like π1, it describes, essentially, maps of Sn into X which don’t extend to
maps of Dn+1, i.e., it turns the “n-dimensional holes” of X into a group.



Homology theory does the same thing, it counts n-dimensional holes. In the end, it is
extremely computable; but we will need a fair bit of machinery before it will become
transparent to calculate. The short version is that homology groups compute “cycles
mod boundaries”, that is, n-dimesional objects/subsets that have no boundary (in
the appropriate sense) modulo objects that are the boundary of (n + 1)-dimensional
ones.
We will focus on two approached to homology: simplicial and singular. The first is
quick to define and compute, but hard to show is an invariant. The second is quick
to see is an invariant, but, at the start, hard to compute! But for spaces where they
are both defined, they are isomorphic. So between the two we get an invariant that
is quick to compute.

Simplicial homology: This is a sequence of groups defined for spaces called Δ-
complexes. They are a particular kind of CW-complex, defined by gluing simplices
together using “nice enough” maps.
More precisely, the standard n-simplex Δn is the set of points

{(x1, . . . xn+1) ∈ R
n+1 :

∑
xi = 1, xi ≥ 0 for all i}.

This is the set of convex linear combinations of the points ei = (0, . . . , 0, 1, 0, . . . , 0),
the vertices of the standard simplex. An n-simplex is the set [v0, . . . vn] of convex
linear combinations of points v0, . . . , vn ∈ R

k for which v1−v0, . . . , vn−v0 are linearly
independent. Any bijection {vertices of Δn} → {v0, . . . , vN} extends (linearly) to
a homeo b/w Δn and [v0, . . . vn]. The faces of a simplex, each opposite a vertex
vi, are obtained by setting the corresponding coefficient xi to 0. Each forms an
(n − 1)-simplex, which we denote [v0, . . . , vi−1, vi+1, . . . , vn] = [v0, . . . , v̂i, . . . , vn] .



A Δ-complex X is a cell complex obtained by gluing simplices together, but we insist
on an extra condition: the restriction of the attaching map to any face is equal to a
(lower-dimensional) simplex. As before, we use the weak topology on the space; a set
is open iff it’s inverse image under the induced map of each simplex into the complex
is open. Each n-cell comes equipped with a characteristic map σ : Δn → X, which
is one-to-one on its interior, whose restriction to the boundary is the attaching map,
and whose restriction to each face is the characteristic map for that (n− 1)-simplex.
We will typically blur the distinction between the characteristic map σ and its image,
and denote the image by σ (or σn), when this will cause no confusion, and call σ an
n-simplex in X. When we feel the need for the distinction, we will use en for the
image and σn for the map.
For example, taking our standard, identifications of the sides of a rectangle as a
cell structure for the 2-torus T 2, and cutting the rectangle into two triangles (=
2-simplices) along a diagonal, we obtain a Δ-structure for T 2 with 2 2-simplices, 3
1-simplices, and 1 0-simplex. A genus g surface can be built, by cutting the 2g-gon
into triangles, with g + 1 2-simplices, 3g 1-simplices, and 1 0-simplex.

As with CW-cplxes, we typically think of building a Δ-complex X inductively. The
0-simplices or vertices form the 0-skeleton X(0). n-simplices σn = [v0, . . . vn] attach
to the (n − 1)-skeleton to form the n-skeleton X(n); the restriction of the attaching
map to each face of σn is an (n − 1)-simplex in X. This attaching map is really
determined by a map {v0, . . . , vn} → X(0), since this determines the attaching maps
for the 1-simplices in the boundary of the n-simplex, which gives 1-simplices in X,
which then give the attaching maps for the 2-simplices in the boundary, etc.



The reverse is not true; the vertices of two different n-simplices in X can be the same.
For example, build 2-sphere as a pair of 2-simplices whose boundaries are glued by the
identity. Δ-complexes generalize simplicial complexes where the simplices are required
to attach by homeomorphisms to the skeleton, and the intersection of two simplices
are a (single) sub-simplex of each. This has the advantage over Δ-complexes that an
n-simplex is determined uniquely by the set of vertices in X(0) that it attaches to.
This means that, in principle, a simplicial complex (and everything associated with
it, e.g., its homology groups!) can be treated purely combinatorially; the complex
is “really” a certain collection of subsets of the vertices (since these determine the
simplices), with the property that any subset B of a subset A that has been declared
to be a simplex is also a simplex. But they have the disadvantage that it typically
takes far more simplices to build a simplicial structure on a space X that it does to
build a Δ-structure. This makes the computations we are about to do take far longer.

The final detail that we need before defining (simplicial) homology groups is the
notion of an orientation on a simplex of X. Each simplex σn is determined by a map
f : {v0, . . . , vn} → X(0); an orientation on σn is an (equivalence class of) the ordered
(n+1)-tuple (f(v0), . . . f(vn)) = (V0, . . . , Vn). Another ordering of the same vertices
represents the same orientation if there is an even permutation taking the entries of
the first (n + 1)-tuple to the second. This should be thought of as a generalization of
the right-hand rule for R

3, interpreted as orienting the vertices of a 3-simplex. Note
that there are precisely two orientations on a simplex.


