
Covering spaces:

The projective plane RP 2 has π1 = Z2 . It is also the quotient of the simply-connected
space S2 by the antipodal map, which, together with the identity map, forms a group
of homeomorphisms of S2 which is isomorphic to Z2. The fact that Z2 has this dual
role to play in describing RP 2 is no accident; codifying this relationship requires the
notion of a covering space.

The quotient map q : S2 → RP 2 is an example of a covering map. A map p : E → B
is called a covering map if for every point x ∈ B, there is a neighborhood U of x (an
evenly covered neighborhood) so that p−1(U) is a disjoint union Uα of open sets in E,
each mapped homeomorphically onto U by (the restriction of) p . B is called the base
space of the covering; E is called the total space.

The quotient map q is an example; (the image of) the complement of a great circle
in S2 will be an evenly covered neighborhood of any point it contains.

The disjoint union of 42 copies of a space, each mapping homeomorphically to a single
copy, is an example of a trivial covering.

The famous exponential map p : R → S1 given by t �→ e2πit = (cos(2πt), sin(2πt)).
The image J ⊆ S1 of any interval (a, b) of length less than 1 will have inverse image
the disjoint union of the intervals (a + n, b + n) for n ∈ Z .



We can build many finite-sheeted (every point inverse is finite) coverings of a bouquet
of two circles, by assembling n points over the vertex, and then, on either side (the
red/blue sides?), connecting the points by n (oriented) arcs, one with one red/blue
arcs going in/out of each vertex. By choosing orientations on each 1-cell of the
bouquet, we can build a covering map by sending the vertices above to the vertex,
and the arcs to the one cells, homeomorphically, respecting the orientations. We can
build infinite-sheeted coverings in much the same way.
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Covering spaces of more “interesting” graphs can be assembled similarly.
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