
Math 872 Algebraic Topology

Running lecture notes

Homology theory: Fundamental groups are a remarkably powerful tool for studying
spaces; they capture a great deal of the global structure of a space, and so they are very
good a distinguishing between homotopy-inequivalent spaces. In theory! But in practice,
they suffer from the fact that deciding whether two groups are isomorphic or not is, in
general, undecideable! Homology theory is designed to get around this deficiency; the
theory, by design, builds (a sequence of) abelian groups Hi(X) from a topological space.
And deciding whether or not two abelian groups, at least if you’re given a presentation
for them, is, in the end, a matter of fairly routine linear algebra. Mostly because of
the Fundamental Theorem of Finitely-generated Abelian groups; each such has a unique
representation as Z

m ⊕ Zm1
⊕ · · · ⊕ Zmn

with mi+1|mi for every i .

There are also “higher” homotopy groups beyond the fundamental group π1, (hence the
name pi-one); elements are homtopy classes, rel boundary, of based maps (In, ∂In) →
(X, x0). Multiplication is again by concatenation. But unlike π1, where we have a chance
to compute it via Seifert-van Kampen, nobody, for example knows what all of the homotopy
groups πn(S2 are (except that nearly all of them are non-trivial!). Like π1, it describes,
essentially, maps of Sn into X which don’t extend to maps of Dn+1, i.e., it turns the
“n-dimensional holes” of X into a group.

Homology theory does the exact same thing, counting n-dimensional holes. In the end we
will find it to be extremely computable; but it will require building a fair bit of machinery
before it will become so transparent to calculate. But the short version is that the homology
groups compute “cycles mod boundaries”, that is, n-dimesional objects/subsets that have
no boundary (in the appropriate sense) modulo objects that are the boundary of (n + 1)-
dimensional ones. There are, in fact, probably as many ways to define homology groups
as there are people actively working in the field; we will focus on two, simplicial homology
and singular homology. The first is quick to define and compute, but hard to show is
an invariant! The second is quick to see is an invariant, but, on the face of it, hard to
compute! Luckily, for spaces where they are both defined, they are isomorphic. So, in the
end, we get an invariant that is quick to compute. Of course, so is the invariant “4”; but
this one will be a bit more informative....

First, simplicial homology. This is a sequence of groups defined for spaces for which they
are easiest to define, which Hatcher calls ∆-complexes. Basically, they are spaces defined by
gluing simplices together using nice enough maps. More precisely, the standard n-simplex

∆n is the set of points {(x1, . . . xn+1) ∈ R
n+1 :

∑
xi = 1, xi ≥ 0 for all i}. This can also

be expressed as convex linear combinations (literally, that’s the conditions on the xi’s) of
the points ei = (0, . . . , 0, 1, 0, . . . , 0), the vertices of the standard simplex. More generally,
an n-simplex is the set [v0, . . . vn] of convex linear combinations of points v0, . . . , vn ∈ R

k

for which v1 − v0, . . . , vn − v0 are linearly independent. Any bijection from the vertices of
the standard simplex to the points v0, . . . , vn extends (linearly) to a homeomorphism of
the simplices. The n + 1 faces of a simplex, each sitting opposite a vertex vi, are obtained
by setting the corresponding coefficient xi to 0. Each forms an (n − 1)-simplex, which we
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denote [v0, . . . , vi−1, vi+1, . . . , vn] or [v0, . . . , v̂i, . . . , vn] . A ∆-complex X is a cell complex
obtained by gluing simplices together, but we insist on an extra condition: the restriction
of the attaching map to any face is equal to a (lower-dimensional) cell. As before, we
use the weak topology on the space; a set is open iff it’s inverse image under the induced
map of a cell into the complex is open. Each n-cell comes equipped with a (continuous)
map σ : ∆n → X , which is one-to-one on its interior, whose restriction to the boundary
is the attaching map, and whose restriction to each face is the associated map for that
(n − 1)-simplex. We will typically blur the distinction between the map σ (called the
characteristic map of the simplex) and its image, and denote the image by σ (or σn), when
this will cause no confusion, and call σ an n-simplex in X . When we feel the need for the
distinction, we will use en for the image and σn for the map.

For example, taking our standard, identifications of the sides of a rectangle, cell struc-
ture for the 2-torus, and cutting the rectangle into two triangles (= 2-simplices) along a
diagonal, we obtain a ∆-structure with 2 2-simplices, 3 1-simplices, and 1 0-simplex. A
genus g surface can be built, by cutting the 2g-gon into triangles, with g + 1 2-simplices,
3g 1-simplices, and 1 0-simplex.

We typically think of building a ∆-complex X inductively. The 0-simplices (i.e., points),
or vertices, form the 0-skeleton X(0). n-simplices σn = [v0, . . . vn] attach to the (n − 1)-
skeleton to form the n-skeleton X(n); the restriction of the attaching map to each face of
σn is, by definition, an (n − 1)-simplex in X . The attaching map is (by induction) really
determined by a map {v0, . . . , vn} → X(0), since this determines the attaching maps for
the 1-simplices in the boundary of the n-simplex, which gives 1-simplices in X , which then
give the attaching maps for the 2-simplices in the boundary, etc. Note that the reverse
is not true; the vertices of two different n-simplices in X can be the same. For example,
think of the 2-sphere as a pair of 2-simplices whose boundaries are glued by the identity.
∆-complexes generalize simplicial complexes where the simplices are required to attach by
homeomorphisms to the skeleton, and the intersection of two simplices are a (single) sub-
simplex of each. This has the advantage over ∆-complexes that an n-simplex is determined
uniquely by the set of vertices in X(0) that it attaches to. This means that, in principle,
a simplicial complex (and everything associated with it, e.g., its homology groups!) can
be treated purely combinatorially; the complex is “really” a certain collection of subsets
of the vertices (since these determine the simplices), with the property that any subset B
of a subset A that has been declared to be a simplex is also a simplex. But they have the
disadvantage that it typically takes far more simplices to build a simplicial structure on a
space X that it does to build a ∆-structure. This makes the computations we are about
to do take far longer.

The final detail that we need before defining (simplicial) homology groups is the no-
tion of an orientation on a simplex of X . Each simplex σn is determined by a map
f : {v0, . . . , vn} → X(0); an orientation on σn is an (equivalence class of) the ordered
(n + 1)-tuple (f(v0), . . . f(vn)) = (V0, . . . , Vn). Another ordering of the same vertices rep-
resents the same orientation if there is an even permutation taking the entries of the first
(n + 1)-tuple to the second. This should be thought of as a generalization of the right-
hand rule for R

3, interpreted as orienting the vertices of a 3-simplex. Note that there are
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precisely two orientations on a simplex.

Now to define homology! We start by defining n-chains; these are (finite) formal linear
combinations of the (oriented!) n-simplices of X , where −σ is interpreted as σ with the
opposite (i.e., other) orientation. Adding formal linear combinations formally, we get the
n-th chain group Cn(X) = {

∑
nασα : σα an oriented n-simplex in X} . We next define a

boundary operator ∂ : Cn(X) → Cn−1(X), whose image will be the (n− 1)-chains that are
the “boundaries” of n-chains. The idea is that the boundary of a 2-simplex, for example,
should be a “sum” of its three faces (since they do make up the boundary of the simplex),
but we need to take into account their orientations, in order to be getting the correct sum.
Thinking of the orientation on a 1-simplex [v, w] as an arrow pointing from v to w, we are
lead to believe that the boundary of a 2-simplex [u, v, w] should be [u, v] + [v, w] + [w, u].
Similarly, the boundary of [u, v], on reflection, should be [v] − [u], to distinguish the head
of the arrow (the + side) from the tail (the − side). On the basis of these examples, trying
to find a consistent formula, one might eventually be led to the following formulation. We
define the boundary on the basis elements σα = σ of Cn(X) as ∂σ =

∑
(−1)iσ|

[v0,... ,v̂i,... ,vn]

, where σ : [v0, . . . , vn] → X is the characteristic map of σα . ∂σ is therefore an alternating
sum of the faces of σ. We then extend the definition by linearity to all of Cn(X). When a
notation indicating dimension is needed, we write ∂ = ∂n . We define ∂0 = 0.

This definition, it utrns out, is cooked up to make the maxim “boundaries have no bound-
ary” true; that is, δn−1◦δn = 0, the 0 map. This is because, for any simplex σ = [v0, . . . vn],

δ ◦ δ(σ) = δ(

n∑

i=0

(−1)iσ|
[v0,... ,v̂i,... ,vn]

)

= (
∑

j<i

(−1)j(−1)iσ|
[v0,... ,v̂j ,... ,v̂i,... ,vn]

) + (
∑

j>i

(−1)j−1(−1)iσ|
[v0,... ,v̂i,... ,v̂j ,... ,vn]

)

The distinction between the two pieces is that in the second part, vj is actually the (j−1)-
st vertex of the face. Switching the roles of i and j in the second sum, we find that the
two are negatives of one another, so they sum to 0, as desired.

And this little calculation is all that it takes to define homology groups! What this tells us
is that im(δn+1) ⊆ ker(δn for every n. ker(δn = Zn(X) are called the n-cycles of X ; they
are the n-chains with 0 (i.e., empty) boundary. They form a (free) abelian subgroup of
Cn(X). im(δn+1 = Bn(X) are the n-boundaries of X ; they are, of course, the boundaries of
(n+1)-chains in X . The n-th homology group of X , Hn(X) is the quotient Zn(X)/Bn(X)
; it is an abelian group.

A key observation is that the boundary maps δn are linear, that is, they are homomorphisms
between the free abelian groups δn : Cn(X) → Cn−1(X). Consequently, they can be
expressed as (integer-valued) matrices ∆n. Row reducing ∆n (over the integers!) allows
us to find a basis v1, . . . , vk for Zn(X) (clearing denomenators to get vectors over Z). Then
since ∆n∆n+1 = 0, the columns of ∆n+1 are in the kernel of ∆n, so can be expressed as
linear combinations of the vi . These combinations can be determined by row reducing the

augmented matrix (v1 · · ·vk|∆n+1) . This will row reduce to

(
I | C
0 | 0

)
, and C basically
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describes the boundaries Bn(X) in terms of the basis v1, . . . , vk . The homology group
Hn(X) is then the cokernel of C, i.e., Z

k/imC . Note that C will have integer entries,
since we know that the columns of ∆n+1 can be expressed as integer linear combinations
of the vi, and, being a basis, there is only one such expression.

Some examples: the Klein bottle K has a ∆-complex structure with 2 2-simplices, 3
1-simplices, and 1 0-simplex; we will call them f1 = [0, 1, 2], f2 = [1, 2, 3], e1 = [0, 2] =
[1, 3], e2 = [1, 0] = [2, 3], e3 = [1, 2], and v1 = [0] = [1] = [2] = [3]. Computing, we
find ∂2f1 = ∂[0, 1, 2] = [1, 2] − [0, 2] + [0, 1] = e3 − e1 − e2 , ∂2f2 = e2 − e1 + e3 ,
∂1e1 = ∂1e2 = ∂1e3 = 0 and ∂i = 0 for all other i (as well). So we have the chain complex

· · · → 0 → Z
2 → Z

3 → Z → 0

and all of the boundary maps are 0, except for ∂2, which has the matrix




−1 −1
−1 1
1 1


 . This

matrix is injective, so ker ∂2 = 0, so H2(K) = 0, on the other hand, H1(K) = coker(∂2),

and applying column operations we can transform the matrix for ∂2 to




1 0
1 2
−1 0


, which

implies that the cokernel is Z ⊕ Z2, since




1
1
−1



 ,




0
1
0



 ,




0
0
1



 is a basis for Z
3. Finally,

H0(K) = Z, since ∂1, ∂0 = 0, and all higher homology groups are also 0, for the same
reason.

As another example, the topologist’s dunce hat has a ∆-structure with 1 2-simplex, 1
1-simplex, and 1 0-simplex. The boundary maps, we can work out (starting from C2(X)
), are (1), (0), and (0), so H2(X) = H1(X) = 0, and H0(X) = Z. all higher groups are
also 0.

These homology groups are, in the end, fairly routine to calculate from a ∆-complex
structure. But there is one very large problem; the calculations depend on the ∆ structure!
This is not a group defined from the space X ; it is defined from the space and a ∆ structure
on it. A priori, we don’t know that if we chose a different structure on the same space,
that we would get isomorphic groups! We should really denote our groups by H∆

i (X), to
acknowledge this dependence on the structure.

But we don’t want a group that depends on this structure. We want groups that just
depend on the topological space X , i.e., which are topological invariants. In really turns
out that these groups H∆

i (X) are topological invariants, but we will need to take a very
roundabout route to show this. What we will do now is to define another sequence Hi(X)
of groups, the singular homology groups, which their definition makes apparent from the
outset that they are topological invariants. But this definition will also make it very unclear
how to really compute them! Then we will show that for ∆-complexes these two sequences
of groups are really the same. In so doing, we will have built a sequence of topological
invariants that for a large class of spaces are fairly routine to compute. Then all we will
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need to show is that they also capture useful information about a space (i.e., we can prove
useful theorems with them!).

And the basic idea behind defining them is that, with simplicial homology, we have already
done all of the hard work. What we do is, as before, build a sequence of (free) abelian
groups, the chain groups Cn(X), and boundary maps between them, with consecutive
maps composing to 0. Then, as before, the homology groups are kernels mod images, i.e.,
cycles mod boundaries. And, as before, the basis elements for each of our chain groups
Cn(X) will be the n-simplices in X . But now X is any topological space. So how do we
get n-simplices in such a space? We do the only thing we can; we map them in.

More precisely, we work with singular n-chains, that is, formal (finite) linear combinations∑
aiσi, where ai ∈ BbbZ and the σi are singular simplices, that is, (continuous) maps

σi : ∆n → X from the (standard) n-simplex into X . The boundary maps are really
exactly as before; they are the alternating sum of the restrictions of σi to the n + 1 faces
of ∆n . (Formally, we must precompose these face maps with the (orientation-preserving)
linear isomorphism from the standard (n − 1)-simplex to each of the faces, preserving the
ordering of their vertices.) The same proof as before (except that we interpret the faces as
restrictions of the map σi, instead of as physical faces) shows that the composition of two
successive boundaries are 0, and so all of the machinery is in place to define the singular

homology groups Hi(X) as the kernel of ∂i modulo the image of ∂i+1 = Zi(X)/Bi(X) .
They are, by their definition, groups defined using the topological space X as input, and
so are topological invariants of X . The elements are equivalence classes of i-cycles, where
z1 ' z2 if z1 − z2 = ∂w for some (i + 1)-chain w . We say that z1 and z2 are homologous.

Singular homology groups are very quick to define, but what do they measure? The
basic idea is that we are trying to mimic simplicial homology, but because a general
topological space X cannot be thought of as being built out of simplices, we do the next
best thing; we study the space by mapping simplices in. Formally, this is what we did
with simplicial homology anyway, except that we restricted ourselves to a very few special
singular simplices (the characteristic maps of the building blocks for X). In the end an
n-cycle

∑
aiσ

n
i , since the faces of the σi must match up precisely, in order to cancel in the

sum, can be thought of as a map of an n-complex into X , made by gluing the n-simplices
σi together before mapping in. The fact that faces cancel really means that these simplices
restrict to the same maps on their faces. The integer coefficients can really be interpreted
as taking multiple copies of ∆n and gluing them together along their boundaries (the signs
tell us the underlying orientations). The idea is that this n-complex is being mapped
“around a hole”, unless it extends to a map of an (n + 1)-complex into X (having our
n-complex as boundary). So singular homology really is trying to detect holes, it is just
doing it with maps.....

The “fun” with singular homology groups, though, comes when you try to compute them.
Cn(X) = {

∑
aiσi : ai ∈ Z and σi : ∆n → X is continuous} is typically a huge group,

since there will be immense numbers of maps ∆n → X . About the only space for which
this is not true is the one-point space ∗; then there is, for each n, exactly one (distinct)
map σn : ∆n → ∗ ; the constant map. Therefore each face of ∆n gives the same restriction
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map σn−1, and so the boundary maps can be dirctly computed (the depend on the parity
of the number n + 1 of faces an n-simplex has). We find that ∂2n = Id and ∂2n−1 = 0 .
so in computing homology groups, we either have kernel everything (∂i = 0) and image
everything (∂i+1 = Id) or kernel nothing (∂i = Id) and image nothing (∂i+1 = 0), so
in both cases Hi(∗) = 0 . Except for i = 0; then ∂0 = 0 (by definition) and ∂1 = 0, so
H0(∗) = Z . But other than this example (and, well, OK, spaces with the discrete topology;
it’s the same calculation as above for every point!), computing singular homology from the
definition is quite a chore! so we need to build some labor-saving devices, namely, some
theorems to help us break the problem of computing these groups into smaller, more
managable pieces.

First set of managable pieces: if we decompose X into its path components, X =
⋃

Xα,
then Hi(X) ∼=

⊕
Hi(Xα) for every i. This is because every singular simplex, since ∆i

is path-connected, maps into some Xα . So Ci(X) ∼=
⊕

Ci(Xα). Since the boundary of
a simplex mapping into Xα consists of simplices in Xα, the boundary maps respect the
decomposistions of the chain groups, so Bi(X) ∼=

⊕
Bi(Xα) and Zi(X) ∼=

⊕
Zi(Xα), and

so the quotients are Hi(X) ∼=
⊕

Hi(Xα) .

So, if we wish to, we can focus on computing homology groups for path-connected spaces
X . For such a space, H0(X) ∼= Z, generated by any map of a 0-simplex (= a point) into
X . This is because any pair of 0-simplices are homologous; given any two points x, y ∈ X ,
there is a path γ : I → X from x to y, This path can be interpreted as a singular 1-
simplex, and ∂γ = y−x . So H0(X) is generated by a single point [x] . No multiple of this
point is null-homologous, because for any 1-chain

∑
niσi, the sum of the coefficients of its

boundary is 0 (since this is true for each singular 1-simplex), and any 0-chain
∑

ni[xi] is
homologous to (

∑
ni)[x] by the above argument.

A small techincal aside: the fact that H0(∗) = Z is annoying to some, and often requires
treating 0-dimensional homology as a special case. But since the boundary of a singular
1-simplex is always of the form v−w, we find that the image of ∂1 is always contained in the
subgroup of C0(X) consisting of chains whose coefficients sum to 0. This means that we
can, for free, augment the singular chain complex by a map · · · → C1(X)∂1

→
C0)X) α

→
Z → 0

where α is the map α(
∑

aiσ
0
i ) =

∑
ai . This is still a chain complex (compositions of

consecutive maps are 0); the resulting homology groups are called reduced homology H̃i(X)

. The only affect this really has is to remove one copy of Z from H0; H̃0(X)⊕Z ∼= H0(X)

. All other homology groups are unchanged. There is a reduced relative homology as well,
since we can augment with the same map (1-simplices always have 2 ends!), but in this

case it has (essentially) no effect; H̃i(X, A) ∼= Hi(X, A) for all i unless A = ∅, in which
case we lose the Z in dimension 0 that we expect to.

Perhaps the most important property of the fundamental group is that a continuouos map
between spaces induces a homomorphism between groups. (This implied, for instance,
that homeomorphic spaces have isomorphic π1). The same is true for homology groups,
for essentially the same reason. Given a map f : X → Y , there is an induced map
f# : Cn(X) → Cn(Y ) defined by postcomposition; for a singular simplex σ, f#(σ) =
f ◦ σ, and we extend the map linearly. Since f ◦ (g|A) = (f ◦ g)|A (postcomposition

6



commutes with restriction of the domain), f# commutes with ∂ : f#(∂σ) = ∂(f#(σ)). A
homomorphism between chain complexes (i.e., a sequence of such maps, one for each chain
group) which commutes with the boundaries maps in this way, is called a chain map. A
chain map, such as f#, therefore, takes cycles to cycles, and boundaries to boundaries, and
so f# : Zi(X) → Zi(Y ) (which is linear, hence a homomorphism) induces a homomorphism
f∗ : Hi(X) → Hi(Y ) by f∗[z] = [f#(z)] . Since it is defined by composition with singular
simplices, it is immediate that, for a map g : Y → Z, (g ◦ f)∗ = g∗ ◦ f∗ . And since
the identity map I : X → X satisfies I# = Id, so I∗ = Id, homeomorphic spaces have
isomorphic homology groups.

Another important property of π1 is that homotopic maps give the same induced map
(after correcting for basepoints). This is also true for homology; if f ' g : X → Y , then
f∗ = g∗ . The proof, however, is not quite as straightforward as for homotopy. And it
requires some new technology; the chain homotopy. A chain homotopy H between the
chain complexes f#, g# : C∗(X) → C∗(Y ) is a sequence of homomorphisms Hi : Ci(X) →
Ci+1(Y ) satisfying Hi−1∂i + ∂i+1Hi = f# − g# : Ci(X) → Ci(Y ) . The existence of H
implies that f∗ = g∗, since for an i-cycle z (with ∂i(z) = 0) we have
f∗[z] − g∗[z] = [f#(z) − g#(z)] = [Hi−1∂i(z) + ∂i+1Hi(z)] = [Hi−1(0) + ∂i+1(w)] =
[∂i+1(w)] = 0.
And the existence of a homotopy between f and g implies the existence of a chain homotopy
between f# and g# . This is because the homotopy gives a map H : X × I → Y , which
induces a map H# : Ci+1(X × I) → Ci+1(Y ) . Then we pull, from our back pocket, a
prism map P : Ci(X) → Ci+1(X×I); the composition H# ◦P will be our chain homotopy.
The prism map takes a (singular) i-simplex σ and sends it to a sum of singular (i + 1)-
simplices in X × I. and the way we define it is to take the i-simplex ∆i, and taking it
to ∆i × I (i.e., a prism), and thinking of this as a sum of (i + 1)-simplices. Using the
map σ′ = σ × Id : ∆i × I → X × I restricted to each of these (i + 1)-simplices yields
the prism map. Now, there are many ways of decomposing a prism into simplices, but we
need to be careful to choose one which restricts well to each of the faces of ∆i, in order
to get the chain homotopy property we require. In the end, what this requires is that the
decomposition, when restricted to any face of ∆i (which we think of as a copy of ∆i−1), is
the same as the decomposition we would have applied to a prism over an (i − 1)-simplex.
After some exploration, we are led to the following formulation.

If we write ∆n × {0} = [v0, . . . , vn] and ∆n × {1} = [w0, . . . , wn], then we can de-
compose ∆n × I as the (n+1)-simplices [v0, . . . , vi, wi, . . . , wn]. We then define P (σ) =∑

(−1)iσ′|[v0,... ,vi,wi,... ,wn]. A routine calculation verifies that (∂P+P∂)(σ) = σ′|[w0,... ,wn]−
σ′|[v0,...vn] ; Composing with H# yields our result.

Consequently, for example, homotopy equivalent spaces have isomporphic (reduced) ho-
mology groups; homotopy equivalences induce isomorphisms. So all contractible spaces
have trivial reduced homology in all dimensions, since they are all homotopy to a point.
If we think of a cell complex as a collection of disks glued together, this lends some hope
that we can compute their homology groups, since we can compute the homology of the
building blocks. Our next goal is to make turn this idea into action; but we need another
tool, to frame our answer in the best way possible.
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Exact sequences: Most of the fundamental properties of homology groups are described
in terms of exact sequences. A sequence of homomorphisms · · · fn+1

→
An

fn

→
An−1

fn−1

→
an−2 →

· · · of abelian groups is called exact if im(fn) = ker(fn−1) for every n. In most cases,
we get the most mileage out of an exact sequence when some of the groups are trivial;
0 → A f

→
B is exact ⇔ f is injective, and A f

→
B → 0 is exact ⇔ f is surjective. An exact

sequence 0 → A→B → C → 0 is called a short exact sequence.

The main tool we will use turns a family of short exact sequences of chain maps between
three chain complexes into a single long exact homology sequence. Given chain complexes
A = (An, ∂) , B = (Bn, ∂′) , and C = (Cn, ∂′′) and short exact sequences of chain maps
(i.e., ∂′in = in∂ , ∂′′jn = jn∂′)
0 → An

in

→
Bn

jn

→
Cn → 0 there is a general result which provides us with a long exact

sequence
· · · ∂

→
Hn(A) i∗

→
Hn(B) j∗

→
Hn(C) ∂

→
Hn−1(A) i∗

→
· · ·

Most of the work is in defining the “boundary” map ∂. Given an element [z] ∈ Hn(C),
a representative z ∈ Cn satisfies ∂′′(z) = 0. But jn is onto, so there is a b ∈ Bn with
jn(b) = z, Then in−1∂

′(b) = ∂′′jn(b) = 0, so ∂′(b) ∈ ker(jn−1 =im(an−1). So there is an
a ∈ An−1 with in−1(a) = ∂′(b) . But then in−2∂(a) = ∂′in−1(a) = ∂′∂′(b) = 0, so, since
in−2 is injective, ∂a = 0, so a ∈ Zn−1(A), and so represents a homology class [a] ∈ Hn(A).
We define ∂([z]) = [a] .
To show that this is well-defined, we need to show that the class [a] we end up with is
independent of the choices made along the way. The choice of a was not really a choice;
in−1 is, by assumption, injective. For b, if jn(b) = z = jn(b′), then jn(b − b′) = 0, so
b − b′ = in(w) for some w ∈ An. Then ∂′b′ = ∂′b − ∂′in(w) = ∂′b − in−1∂(w), so choosing
a′ = a − ∂(w) we have in−1(a

′) = ∂′(b′). But then [a′] = [a − ∂w] = [a] − [delw] = [a].
Finally, there is actually a choice of z ; if [z] = [z′], then z′ = z + ∂′′w for some w ∈ Cn+1;
but then choosing b′, w′ with jn(b′) = z′ , jn+1(w

′) = w , we have
∂′′w = ∂′′jn+1(w

′) = jn∂′(w′) , so
z′ = z+∂′′w = jn(b+∂′w′), so we may choose b′ = b+∂′w′ (since the result is independent
of this choice!), then since ∂′b′ = ∂′b everything continues the same.

Now to exactness! We need to show three (types of) equalities, which means six contain-
ments. Three (image contained in kernel) are shown basically by showing that compositions
of two consecutive homomorphisms are trivial. jnin = 0 immediately implies j∗i∗ = 0 .
From the definition of ∂, i∗∂[z] = [in(a)] = [∂′(b)] = 0, and ∂j∗[z] = ∂[jn(z)] = [a], where
in−1(a) = ∂′(z) = 0, so a = 0 (since in−1 is injective), so [a] = 0.

For the opposite containments, if j∗[z] = [jn(z)] = 0, then jn(z) = ∂′′w for some w.
Since jn+1 is onto, w = jn+1(b) for some b. Then jn(z − ∂′b) = ∂′′w − ∂′′jn+1b = 0, so
z = ∂′b = in(a) for some a, so i∗[a] = [z − ∂′b] = [z] . So ker j∗ ⊆imi∗ . If i∗[z] = 0, then
in(z) = ∂′w for some w ∈ Bn+1. Setting c = jn+1(w), then ∂′′c = jn∂′w − inin(Z) = 0,
so [c] ∈ hn+1(C), and computing ∂[c] we find that we can choose w for the first step and z
for the second step, so ∂[c] = [z] . So ker jn ⊆im∂ . Finally, if ∂[z] = 0, then z = jn(b) for
some b, and ∂′b = in−1(a) with [a] = 0, i.e., a = ∂w for some w. So ∂′b = in−1∂w = ∂′inw
But then ∂′(b − inw) = 0, and jn(b − inw) = z − 0 = z, so z ∈im(jn), so [z] ∈im(j∗) . So
ker ∂ ⊆im(jn) . Which finishes the proof!
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Now all we need are some new chain complexes!
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