Math 856 Problem Set 1

Starred (*) problems to be handed in Thursday, September 15

- (*) 1. You've probably heard that a connected, locally path-connected space X is path connected; the set of points reachable from x ∈ X by a path is open (and its complement is also open). So a connected manifold is path connected.

 Show, further, that a connected manifold M is arcwise connected, that is, for every pair of points x, y ∈ M there is a one-to-one path γ : [0,1] → M with γ(0) = x, γ(1) = y.

 (There is a theorem, due to Hahn and Mazurkiewicz (circa 1914), which says that a Hausdorff space is path connected iff it is arcwise connected (which is kind of funny, since the term "Hausdorff" wasn't really introduced until the 1920s?); but for manifolds you can give a much more elementary proof...)
 - **2.** Show that every topological n-manifold has a countable basis consisting of open sets homeomorphic to \mathbb{R}^n . [Hint: start with any old countable basis....]
- (*) 3. (Lee, p. 28, problem 1-4) If $0 \le k \le \min\{m, n\}$, show that the set $R_k \subseteq M(m \times n, \mathbb{R})$ of m-by-n matrices with rank $\ge k$ is an open subset of $M(m \times n, \mathbb{R}) \cong \mathbb{R}^{mn}$ (and therefore admits a smooth structure). (*Hint:* look at Lee's linear algebra appendix...) Note: This implies that the space $GL(n, \mathbb{R})$ of invertible $n \times n$ matrices is a smooth manifold, of dimension n^2 .
- (*) 4. We will call two C^{∞} atlases \mathcal{A} and \mathcal{B} for a manifold M equivalent if their union $\mathcal{A} \cup \mathcal{B} = \mathcal{C}$ is also a C^{∞} atlas for M. Show that equivalence is an equivalence relation!
 - **5.** We say that two charts $\phi: U \to \mathbb{R}^n$, $\psi: V \to \mathbb{R}^n$, $U, V \subseteq M^n$ are $\underline{C^{\infty}\text{-related}}$ if $\psi \circ \phi^{-1}: \phi(U \cap V) \to \psi(U \cap V)$ and $\phi \circ \psi^{-1}: \psi(U \cap V) \to \phi(U \cap V)$ are both C^{∞} . Show that the relation " is C^{∞} -related to " is **not** an equivalence relation. (Hint: $M^n = \mathbb{R}$ will suffice for an example...)
 - **6.** Show that \mathbb{R} has uncountably many distinct smooth structures. [(Perhaps) show first that it is enough to find uncountably many charts, with intersecting domains and ranges, no two of which are C^{∞} -related to one another.]
- (*) 7. If M and N are smooth manifolds, show that $M \times N$ and $N \times M$, with the (two) product smooth structures $\{(U_{\alpha} \times V_{\beta}, h_{\alpha} \times k_{\beta})\}$ are diffeomorphic. [I.e., exhibit (and verify) a diffeomorphism!]