Math 856 Homework 1
Starred (*) problems to be handed in Friday, September 11

(*) 1: Show that a connected manifold M is arcwise connected, that is, for every pair of points $x, y \in M$ there is a one-to-one path $\gamma : [0, 1] \to M$ with $\gamma(0) = x; \gamma(1) = y$.

(There is a theorem, due to Hahn and Mazurkiewicz (circa 1914), which says that a Hausdorff space is path connected iff it is arcwise connected (which is kind of funny, since the term “Hausdorff” wasn’t really introduced until the 1920s?); but for manifolds you can give a much more elementary proof...)

2: Show that if $A, B \subseteq \mathbb{R}^2$ are closed subsets, the statement
\[
\mathbb{R}^2 \setminus A \cong \mathbb{R}^2 \setminus B \Rightarrow A \cong B
\]
is false. What about the converse statement?

3 Show that every topological n-manifold has a countable basis consisting of open sets homeomorphic to \mathbb{R}^n. [Hint: start with any old countable basis....]

(*) 4: (Lee, p. 28, problem 1-4) If $0 \leq k \leq \min\{m, n\}$, show that the set $R_k \subseteq M(m \times n, \mathbb{R})$ of m-by-n matrices with rank $\geq k$ is an open subset of $M(m \times n, \mathbb{R}) \cong \mathbb{R}^{mn}$ (and therefore admits a smooth structure). (Hint: look at Lee’s linear algebra appendix...)

(*) 5: We say that two charts $\phi : U \to \mathbb{R}^n$, $\psi : V \to \mathbb{R}^n$, $U, V \subseteq M^n$ are C^∞-related if $\psi \circ \phi^{-1} : \phi(U \cap V) \to \psi(U \cap V)$ and $\phi \circ \psi^{-1} : \psi(U \cap V) \to \phi(U \cap V)$ are both C^∞. Show that the relation “is C^∞-related to” is not an equivalence relation. (Hint: $M^n = \mathbb{R}$ will suffice for an example...)

6: Show that \mathbb{R} has uncountably many distinct smooth structures. ((Perhaps) show first that it is enough to find uncountably many charts, with intersecting domains and ranges, no two of which are C^∞-related to one another.)