Math 856 Homework 6

Starred (*) problems to be handed in Tuesday, November 28

- (*) 30: (Lee, p.172, Problem 7-8) If $F: M \to N$ is a submersion and X is a smooth vector field on N, show that there is a smooth vector field Y on M that is F-related to X.
 - **31:** Show that the set $\{(x,|x|):x\in\mathbb{R}\}$ is not the image of any immersion of \mathbb{R} into \mathbb{R}^2 . (Hint: nothing fancy, just beat it over the head with calculus?)
- (*) 32: (a) If $U \subseteq \mathbb{R}^n$ is open and $F: U \to \mathbb{R}^m$ is smooth, show that the graph of F, $\Gamma(F) = \{(x, F(x)) \in \mathbb{R}^{n+m} : x \in U\}$ is an embedded submanifold of \mathbb{R}^{n+m} .
 - (b) Show, conversely, that every embedded submanifold of \mathbb{R}^N is locally of this form. (You will need to use the implicit function theorem?)
 - **33:** (a) Show that an immersion from one *n*-manifold to another is an open map.
 - (b) Show that if M and N are n-manifolds, M is compact, N is connected, and $F:M\to N$ is an immersion, then F is onto.
 - **34:** If $S \subseteq M$ is a closed, embedded submanifold, $U \supseteq S$ is an open neighborhood of S, and $f: S \to \mathbb{R}$ is a smooth function, show that there is a smooth function $F: M \to \mathbb{R}$ with $F|_S = f$ and $\sup_{S \to \mathbb{R}} F(S) \subseteq G$.