Math 856 Homework 2

Starred (*) problems to be handed in Thursday, September 21

- (*) 9: Let $\mathbb{H}^n = \{(x_1, \dots, x_n) \in \mathbb{R}^n : x_n \geq 0\}$. Suppose that $f : \mathbb{H}^n \to \mathbb{R}$ is a function for which every $x \in \mathbb{H}^n$ has an open neighborhood U_x of x such that f extends to a C^{∞} function on U_x . Show that f extends to a C^{∞} function on a neighborhood of \mathbb{H}^n in \mathbb{R}^n . (Short version: show that if f is locally smooth, then f is smooth. A well-chosen partition of unity might help?)
- **10:** We know that if $C, D \subseteq M$ are disjoint closed sets of the smooth manifold M, then there exists a smooth function $f: M \to [0,1]$ with $C \subseteq f^{-1}(0)$ and $D \subseteq f^{-1}(1)$. But we can if fact make these containments *equalities*:
 - (a) Show that it suffices to build a smooth function $g: M \to [0,1]$ with $C = g^{-1}(0)$.
- (b) Build a countable cover $\{U_i\}$ of $M \setminus C$ by open sets of the form $h_i^{-1}(B(x_i, 1))$ for a collection of coordinate charts $h_i = (x^1, \ldots, x^n)$ with image containing $B(x_i, 2)$. Build C^{∞} functions $g_i : M \to \mathbb{R}$ which are > 0 in U_i and = 0 on $M \setminus U_i$. Note that $\overline{U_i}$ is compact; for each i, let

$$\alpha_i = \sup_{x \in \overline{U_i}; j \le i; m \le i; k_1, \dots k_m \le n} \left\{ \frac{\partial^m g_j}{\partial x^{k_1} \cdots \partial x^{k_m}} (x) \right\}.$$

Show that the function $g = \sum g_i/(\alpha_i 2^i)$ is C^{∞} and $C = g^{-1}(0)$.

- **11:** Giving $M_1 \times M_2$ the product smooth structure, show that $f: N \to M_1 \times M_2$ is smooth \Leftrightarrow the maps $p_1 \circ f: N \to M_1$, $p_2 \circ f: N \to M_2$ are smooth, where p_1, p_2 are the projections onto the first and second factors, respectively. Show, moreover, that the product smooth structure is the only smooth structure with this property.
- **12:** If M, N are smooth manifolds, show that $M \times N$ is diffeomorphic to $N \times M$.
- (*) 13: [Lee, problem 2.6] For M a (smooth) manifold, let C(M) denote the set of continuous functions from M to \mathbb{R} , thought of as an algebra (i.e., a ring and a vector space over \mathbb{R}) with scalar multiplication by \mathbb{R} , and pointwise addition and multiplication. Let $C^{\infty}(M)$ be the subalgebra of smooth functions. If $F: M \to N$ is continuous, let $F^*: C(N) \to C(M)$ be given by $F^*(f) = f \circ F$.
 - (a) Show that F^* is a linear map.
 - (b) Show that F is smooth $\Leftrightarrow F^*(C^{\infty}(N)) \subseteq C^{\infty}(M)$.
- (c) Suppose F is a homeomorphism. Show that F is a diffeomorphism $\Leftrightarrow F^*: C^{\infty}(N) \to C^{\infty}(M)$ is an isomorphism.