
Math 445 Number Theory

August 23 and 25, 2004

Number theory is about finding and explaining patterns in numbers.
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Place the natural numbers in a rect-
angular spiral. The primes tend to
fall on certain diagonal lines with more
frequency than it seems they should?

This means: for certain values of α, β, γ,
the sequences n2 + α , n2 + n + β ,
n2−n+γ have more primes than we
expect them to.

Why? We don’t yet know...

Egyptian fractions:
Any rational number m/n can be written as a sum of reciprocals 1/a of integers. In fact,
by repeatedly subtracting the largest reciprocal that we can from whatever is left, we find
that
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with a1 < a2 < . . . < ak and k ≤ n. But not every fraction 3/n can be expressed as a sum
of two reciprocals (e.g, 3/7). However, it is conjectured (the Erdös-Strauss Conjecture)
that

every fraction
4

n
is the sum of at most 3 reciprocals.

This has been verified to n = 1014, but still remains open.

These sorts of expressions actually occur in engineering: If resistors with resistances
r1, . . . , rn are wired in parallel, they act as a single resistor with resistance r, where
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so a resistor with ‘custom’ resistance r can be ‘manufactured’ from a set of standard
resistors by solving such equations.

Perfect numbers: A number N is perfect if it is equal to the sum of its proper divisors.
Euler showed that every even perfect number must be of the form N = 2n(2n+1−1) where
p = 2n+1 − 1 is prime. Such primes are known as Mersenne primes; there are only 44
currently known Mersenne primes, including the 4 (or so?) largest known primes. It is
still an open question whether or not there exists an odd perfect number.

If the divisors of N are 1 = a0, a1, . . . , an = N in order, then to be perfect we need
N = a0 + · · ·+ an−1. Dividing by N yields
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and so techinques from Egyptian fractions can be employed. For example, it is known that
the largest denomenator, an = N must be ≤ un where the ui are a fixed sequence defined
by u1 = 1 and ui+1 = ui(ui + 1). These provide an upper bound on the size of an odd
perfect number with exactly k factors. Techniques such as this and others have enabled
researchers to show that any odd perfect number (if one exists) has at least 300 digits, at
least 9 distinct prime factors, and at least 57 prime factors in all......


