## Math 445 Number Theory

August 23 and 25, 2004

Number theory is about finding and explaining patterns in numbers.

Ulam Sprial:

| 36 35        | 34 | 33 | 32 | 31 | 30 | Place the natural numbers in a rect-<br>angular spiral. The primes tend to<br>fall on certain diagonal lines with more |
|--------------|----|----|----|----|----|------------------------------------------------------------------------------------------------------------------------|
| <b>37</b> 16 | 15 | 14 | 13 | 12 | 29 |                                                                                                                        |
| 38 17        | 4  | 3  | 2  | 11 | 28 | frequency than it seems they should?                                                                                   |
| 39 18        | 5  | 0  | 1  | 10 | 27 | This means: for certain values of $\alpha, \beta, \gamma$ ,                                                            |
| 40 19        |    |    |    |    | _  | the sequences $n^2 + \alpha$ , $n^2 + n + \beta$ , $n^2 - n + \gamma$ have more primes than we                         |
| 41 20        |    |    |    |    | 25 | expect them to.                                                                                                        |
| 42 43        | 44 | 45 | 46 | 47 | 48 | Why? We don't yet know                                                                                                 |

## Egyptian fractions:

Any rational number m/n can be written as a sum of reciprocals 1/a of integers. In fact, by repeatedly subtracting the largest reciprocal that we can from whatever is left, we find that

$$\frac{m}{n} = \frac{1}{a_1} + \dots + \frac{1}{a_k}$$

with  $a_1 < a_2 < \ldots < a_k$  and  $k \le n$ . But not every fraction 3/n can be expressed as a sum of two reciprocals (e.g., 3/7). However, it is conjectured (the Erdös-Strauss Conjecture) that

every fraction  $\frac{4}{n}$  is the sum of at most 3 reciprocals. This has been verified to  $n=10^{14}$ , but still remains open.

These sorts of expressions actually occur in engineering: If resistors with resistances  $r_1, \ldots, r_n$  are wired in parallel, they act as a single resistor with resistance r, where  $\frac{1}{r} = \frac{1}{r_1} + \cdots + \frac{1}{r_n}$ 

$$\frac{1}{r} = \frac{1}{r_1} + \dots + \frac{1}{r_n}$$

so a resistor with 'custom' resistance r can be 'manufactured' from a set of standard resistors by solving such equations.

**Perfect numbers:** A number N is perfect if it is equal to the sum of its proper divisors. Euler showed that every even perfect number must be of the form  $N=2^n(2^{n+1}-1)$  where  $p=2^{n+1}-1$  is <u>prime</u>. Such primes are known as Mersenne primes; there are only 44 currently known Mersenne primes, including the 4 (or so?) largest known primes. It is still an open question whether or not there exists an odd perfect number.

If the divisors of N are  $1 = a_0, a_1, \ldots, a_n = N$  in order, then to be perfect we need  $N = a_0 + \cdots + a_{n-1}$ . Dividing by N yields

$$1 = \frac{1}{a_n} + \dots + \frac{1}{a_1}$$

 $1=\frac{1}{a_n}+\cdots+\frac{1}{a_1}$  and so techinques from Egyptian fractions can be employed. For example, it is known that the largest denomenator,  $a_n = N$  must be  $\leq u_n$  where the  $u_i$  are a fixed sequence defined by  $u_1 = 1$  and  $u_{i+1} = u_i(u_i + 1)$ . These provide an upper bound on the size of an odd perfect number with exactly k factors. Techniques such as this and others have enabled researchers to show that any odd perfect number (if one exists) has at least 300 digits, at least 9 distinct prime factors, and at least 57 prime factors in all......