Math 445 Homework 8

Due Wednesday, November 10

36. Let h_n/k_n (as usual) denote the n^{th} convergent of the continued fraction expansion of the irrational number x. Show by example that it need **not** be true that

$$\left|x - \frac{a}{b}\right| < \left|x - \frac{h_n}{k_n}\right| \text{ implies } b \ge k_{n+1}$$

- 37. [NZM, p.344, # 7.6.3] Show that for any c>2, there are only finitely many pairs of integers a,b with $|\sqrt{2}-\frac{a}{b}|<\frac{1}{b^c}$.
- 38. [NZM, p. 333, # 7.3.6] Let p be prime and suppose $u^2 \equiv -1 \pmod p$ (so $p \equiv 1 \pmod 4$). Let $[a_0, \ldots, a_n]$ be the continued fraction expansion of $\frac{u}{p}$, and let i be the largest integer with $k_i \leq \sqrt{p}$. Show that $|\frac{h_i}{k_i} \frac{u}{p}| < \frac{1}{k_i \sqrt{p}}$, and $|h_i p k_i u| < \sqrt{p}$. Setting $x = k_i$ and $y = h_i p u k_i$, show that $p|x^2 + y^2$ and $x^2 + y^2 < 2p$, so $x^2 + y^2 = p$.
- 39. Show that for n a positive integer that is not a perfect square (translation: the continued fraction expansion of \sqrt{n} never terminates), that at every stage of the continued fraction expansion of $x = \sqrt{n}$

$$x = [a_0, a_1, \dots, a_{k-1}, a_k + x_k]$$

 x_k is always of the form $x_k = \frac{\sqrt{n-a}}{b}$, where $a, b \in \mathbb{N}$ and $b|n-a^2$. Conclude that the continued fraction expansion of \sqrt{n} will eventually repeat, with a period of length at most $n|\sqrt{n}|$.

Hint: by induction! In the inductive step, write $\frac{b}{\sqrt{n}-a} = \frac{\sqrt{n}+a}{c}$, and then find the fractional part of this. For the second half, how long must you wait before the x_k 's must repeat themselves?