31. Find the continued fraction expansions of the rational numbers \(\frac{53}{18} \) and \(\frac{115}{53} \).

32. [NZM, p.327, Problem 7.2.5] Show that if \(x = [a_0, \ldots, a_n, b] \) and \(x = [a_0, \ldots, a_n, c] \) with \(b < c \), then \(x < y \) if \(n \) is odd, and \(x > y \) is \(n \) is even.

 [Hint: induction!]

33. Find the continued fraction expansion of \(\sqrt{17} \), and use this to find the first five (5) convergents of \(\sqrt{17} \).

34. Repeat problem #33, for \(\sqrt{19} \).

35. [NZM, p.336, Problem 7.5.3 (sort of)] If \(\alpha < \beta < \gamma \) are irrational numbers, \(\alpha = [a_0, a_1, \ldots] \), \(\beta = [b_0, b_1, \ldots] \), \(\gamma = [c_0, c_1, \ldots, \ldots] \), and \(a_i = c_i \) for \(0 \leq i \leq n \), then \(a_i = b_i = c_i \) for \(0 \leq i \leq n \).

 [Hint: Induction! Use \(\alpha = [a_0, \ldots, a_{i-1}, a_i + x_i] \), etc. and Problem #32 to compare \(a_{i+1} = \left\lfloor \frac{1}{x_i} \right\rfloor \), etc. Note that if \(x < y \) then \(\lfloor x \rfloor \leq \lfloor y \rfloor \).]