Math 445 Homework 6 Solutions
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26. If p is an odd prime and a is a primitive root mod p, then (—) =-—1.
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27. The Fermat number F,, = 22 =1 (mod F},) .
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<F_> (mod F,). But by quadratic reciprocity, <F_> =
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<§> =27 =2l=2=—1 (mod 3), so Bz’g(%) =— — =1 (mod F,) .

(<) If 37 = -1 (mod F,) then since F,, — 1 = 22" is a power of 2, for every prime
Fp—1

p|F, — 1, we have found an a with ¢~ » = —1 (mod F,), so by Lucas’ Theorem, F), is

prime.

28. The primes p for which 22 = 13 (mod p) has solutions:

Every integer n is congruent to one of —6,—5,...,5,6 mod 13. By quadratic reciprocity,
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calculatlon work with the residue of p mod 13, rather than with p, it suffices to compute

these Legendre symbols for n = —6 through n = 6. Each of these numbers is a product of
the numbers —1,2, 3, and 5, so it suffices to compute Legendre symbols for them.
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(%) —1, (%) — 1, (%) =1 and (%) =—1. So
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29.

30.

(=1t =rt=s (2)-
()~ ()= (3)(5) - o -
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So the primes p for which 22 = 13 (mod p) has solutions are those that are congruent, mod
13, to —4,—-3,—1,1,3, or 4. Or, if you prefer, those congruent to 1,3,4,9,10, or 12.
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If p > 7 is an odd prime, then (ﬁ) — <
b

) for at least one of n = 2,3, or 8.
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Since (E) = *£1 , it is enough to show that < )(n i ) = <M) = 1 for at least
p p p p
one of these values. That is, we wish to show that one of

<g>, <%>, or (%) is 1.

But <§> = <2p3> = (%) <%> = 1 when <%> and <1§)> have the same sign.g(%) =
(53 = CY () = C) = e v (B) =1 () = (55F) =
)= () =1 (3) =1,
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So, if (—) =1, then <§> = <g> f <§> =1, then <§> = (—) . If neither of these cases
p p p p p p
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occur, then both are —1, so (g) =—-1= <§) So < ) = <n+ 1) for at least one of
p p p
n=2,3or8.
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Compute <£> , <ﬁ> , and ( 80)
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Let’s treat these as Jacobi symbols, to speed up the computations.
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