Math 445 Homework 5 Solutions
Due Wednesday, October 6

21. If an integer \(n \) can be expressed as the sum of the squares of two rational numbers

\[
(*) \quad n = \left(\frac{a}{b} \right)^2 + \left(\frac{c}{d} \right)^2,
\]

then \(n \) can be expressed as the sum of the squares of two integers.

From (*), clearing denominators, we have that \(nb^2d^2 = a^2d^2 + c^2b^2 = (ad)^2 + (be)^2 \) is a sum of two squares. So for every prime \(p \) with \(p \equiv 3 \pmod{4} \), \(p^k|nb^2d^2 = n(bd)^2 \) with \(k \) even. But since \((bd)^2\) is a perfect square, \(p^m|((bd)^2) \) has \(m \) even. So \(p^{k-m}|n \) has \(k-m \) even. Consequently, every prime \(p \) with \(p \equiv 3 \pmod{4} \) which appears in the prime factorization of \(n \) has even exponent. Therefore, by our main result from class, \(n \) can be expressed as a sum of two squares.

22. How many solutions \(\pmod{17} \) each of the following congruence equations have?

(a) \(x^{12} \equiv 16 \pmod{17} \)

\((12,17-1) = (12,16) = (4 \cdot 3, 4 \cdot 4) = 4 \cdot (3,4) = 4 \), so we need to determine if, \(\pmod{17} \), \(16^{\frac{17-1}{4}} = 16^4 \equiv 1 \). But \(16 \equiv -1 \), so \(16^4 \equiv (-1)^4 = 1 \), as desired. Therefore, \(x^{12} \equiv 16 \pmod{17} \) has \((12,16) = 4 \) solutions.

(b) \(x^{48} \equiv 9 \pmod{17} \)

\((48,17-1) = (48,16) = 16 \), so we need to determine if, \(\pmod{17} \), \(9^{\frac{17-1}{4}} = 9^1 \equiv 9 \). But it isn’t; it is \(9 \not\equiv 1 \). So \(x^{48} \equiv 9 \pmod{17} \) has no solutions.

(c) \(x^{20} \equiv 13 \pmod{17} \)

\((20,17-1) = (20,16) = 4 \cdot (5,4) = 4 \), so we need to determine if, \(\pmod{17} \), \(13^{\frac{17-1}{2}} = 13^4 \equiv 1 \). But, \(\pmod{17} \), \(13^2 = 169 \equiv -1 \), so \(13^4 \equiv (-1)^2 = 1 \), as desired. So \(x^{20} \equiv 13 \pmod{17} \) has \((20,16) = 4 \) solutions.

(d) \(x^{11} \equiv 9 \pmod{17} \)

\((11,17-1) = (11,16) = 1 \) (since \(1 = 3 \cdot 11 - 2 \cdot 16 \)), so we need to determine if, \(\pmod{17} \), \(9^{\frac{17-1}{2}} = 9^{16} \equiv 1 \). But since \((9,17) = 1 \) (since \(2 \cdot 9 - 1 \cdot 17 = 1 \)), \(9^{16} \equiv 1 \pmod{17} \) by Fermat’s Little Theorem. So \(x^{11} \equiv 9 \pmod{17} \) has 1 solution.

23. If \(p \) is a prime, and \(p \equiv 3 \pmod{4} \), then the congruence equation \(x^4 \equiv a \pmod{p} \) has a solution \(\iff x^2 \equiv a \pmod{p} \) does.

Since \(p \equiv 3 \pmod{4} \), \(p-1 \equiv 2 \pmod{4} \), so \(p-1 = 4k+2 = 2(2k+1) \) for some \(k \). Then \((4,p-1) = (2 \cdot 2, 2(2k+1)) = 2(2,2k+1) = 2 \). By our result from class, \(x^4 \equiv a \pmod{p} \) has a solution \(\iff a \frac{p-1}{4} \equiv a \frac{p-1}{2} \equiv 1 \pmod{p} \). But since \(2|p-1 \), \(2, p-1 = 2 \), and so by the same result, \(x^2 \equiv a \pmod{p} \) has a solution \(\iff a \frac{p-1}{2} \equiv 1 \pmod{p} \).

So \(x^4 \equiv a \pmod{p} \) has a solution \(\iff a \frac{p+1}{4} \equiv 1 \pmod{p} \iff x^2 \equiv a \pmod{p} \) has a solution, as desired.
24. If \(a, b \) are both primitive roots of 1 modulo the odd prime \(p \), then \(ab \) is not a primitive root of 1 modulo \(p \).

Since \(p \) is odd, \(p - 1 \) is even. Since \(a \) and \(b \) are primitive roots, \(\text{ord}_p(a) = p - 1 = \text{ord}_p(b) \). So, mod \(p \), \(a^{p-1} \equiv 1 \equiv b^{p-1} \), but \(a^{\frac{p-1}{2}} \not\equiv 1 \not\equiv b^{\frac{p-1}{2}} \). By the Miller-Rabin test, the latter two equations imply that \(a^{\frac{p-1}{2}} \equiv -1 \equiv b^{\frac{p-1}{2}} \). Consequently, \((ab)^{\frac{p-1}{2}} = a^{\frac{p-1}{2}}b^{\frac{p-1}{2}} \equiv (-1)(-1) = 1 \), so \(\text{ord}_p(ab)|\frac{p-1}{2} < p-1 \), so \(ab \) is not a primitive root mod \(p \).

25. Find a primitive root modulo 23.

Following our argument from class, since \(23 - 1 = 22 = 2 \cdot 11 \), we will find an \(a \) with \(a^{22/11} = a^{2} \not\equiv 1 \) (mod 23) and \(b \) with \(b^{22/2} = b^{11} \not\equiv 1 \) (mod 23). Then \(c = ab \) will be a primitive root. But \(a = 2 \) works; \(2^{2} = 4 \not\equiv 1 \). And since 11 is odd, \(b = 22 \equiv -1 \) works; \(22^{11} \equiv (-1)^{11} = -1 \not\equiv 1 \) (mod 23). So, from our argument in class, \(c = 2 \cdot 22 = 44 \equiv 21 \) is a primitive root, mod 23.

Note: There are, in fact, \(\Phi(\Phi(23)) = \Phi(22) = \Phi(2 \cdot 11) = (2 - 1)(11 - 1) = 10 \) primitive roots mod 23. They can be found by raising the one found here, 21, to all of the exponents relatively prime to 22. (Via Maple, they are: \(21, 21^3 = 15, 21^5 = 14, 21^7 = 10, 21^9 = 17, 21^{13} = 19, 21^{15} = 7, 21^{17} = 5, 21^{19} = 20, 21^{21} = 11 \). So, in consecutive order, they are 5,7,10,11,14,15,17,19,20,21.)