Math 445 Homework 4 Solutions

16. [NZM p.59, # 56] Suppose p is prime, and $x^2 \equiv -2 \pmod{p}$. By looking at the numbers u + xv for u, v in some range, show that at least one of the equations

$$a^2 + 2b^2 = p$$
 or $a^2 + 2b^2 = 2p$

has a solution.

Following the lead of our proof for sums of squares, set $k = |\sqrt{p}|$, so

$$k = |\sqrt{p}| \le \sqrt{p} \le \lceil \sqrt{p} \rceil \le |\sqrt{p}| + 1 = k + 1$$
.

This implies that $k^2 \le p \le (k+1)^2$. Note that $k^2 = p$ is impossible, since p is prime. So $k^2 < p$. By the same reasoning, $(k+1)^2 = p$ is impossible, so $p < (k+1)^2$.

Now look at the collection of integers u + xv for $0 \le u, v \le k$. Since there are $(k+1)^2$ possible choices of pairs (u, v), at least two of the integers u + xv are congruent, mod p. So $u + xv \equiv U + xV$ for some distinct pair $(u, v) \neq (U, V)$. This implies that $u-U \equiv x(V-v)$, so, setting a=u-U, b=V-v, $a^2 \equiv x^2b^2 \equiv -2b^2 \pmod{p}$, so $a^2 + 2b^2 \equiv 0 \pmod{p}$. So $p|a^2 + 2b^2$, so $a^2 + 2b^2 = kp$ for some k. But since $0 \le u, U, v, V \le k, |a|, |b| \le k$ (and at least one of them is $\ne 0$, otherwise u = U and v=V), so

$$0 < a^2 + 2b^2 \le k^2 + 2k^2 = 3k^2 < 3p.$$

So either $a^2 + 2b^2 = p$ or $a^2 + 2b^2 = 2p$ (since these are the only multiples of p strictly between 0 and 3p. So at least one of the equations

$$a^2 + 2b^2 = p$$
 or $a^2 + 2b^2 = 2p$

has a solution.

17. [NZM p.60, # 57] Show that

$$(a^2+2b^2)(c^2+2d^2)=(ac-2bd)^2+2(bc+ad)^2$$

 $(a^2 + 2b^2)(c^2 + 2d^2) = a^2c^2 + 2a^2d^2 + 2b^2c^2 + 4b^2d^2$. On the other hand,

$$(ac - 2bd)^2 + 2(bc + ad)^2$$

$$= ((ac)^2 - 2(ac)(2bd) + (2bd)^2) + 2((bc)^2 + 2(bc)(ad) + (ad)^2)$$

= $a^2c^2 - 4abcd + 4b^2d^2 + 2b^2c^2 + 4abcd + 2a^2d^2$

$$= a^2c^2 - 4abcd + 4b^2d^2 + 2b^2c^2 + 4abcd + 2a^2d^2$$

$$= a^2c^2 + 2a^2d^2 + 2b^2c^2 + 4b^2d^2$$

So
$$(a^2 + 2b^2)(c^2 + 2d^2) = (ac - 2bd)^2 + 2(bc + ad)^2$$
, as desired.

18. [NZM p.60, # 58] Show that if p is prime and odd and $a^2 + 2b^2 = 2p$, then a is even and b is odd. Conclude that $b^2 + 2(a/2)^2 = p$ is a solution in the integers.

If $a^2 + 2b^2 = 2p$, then $a^2 + 2p - 2b^2 = 2(p - b^2)$, so a^2 is even, so a is even. Then a = 2c for some c, so $2p = (2c)^2 + 2b^2 = 2(2c^2 + b^2)$, so $p = 2c^2 + b^2$. So $b^2 = p - 2c^2$ is odd (since p is), so b is odd.

In particular, we just showed that $p = 2c^2 + b^2 = b^2 + 2(a/2)^2$, so $x^2 + 2y^2 = p$ has a solution whenever $x^2 + 2y^2 = 2p$ does (and p is odd).

19. [NZM p.60, # 59] Let p be a prime factor of the number a^2+2b^2 . Show that if $p \not| a$ or $p \not| b$ then the equation $x^2 \equiv -2 \pmod{p}$ has a solution.

We have $p|a^2+2b^2$, so $a^2\equiv -2b^2\pmod p$. If $p\not|b$, then since p is prime, (p,b)=1, so there is a y with $by\equiv 1\pmod p$ (in fact, $y=b^{p-2}$ works, by FLT). Then $(ay)^2=a^2y^2\equiv -2b^2y^2=-2(by)^2\equiv -2(1)=-2\pmod p$, so x=ay is a solution to $x^2\equiv -2\pmod p$.

If, on the other hand, $p \not| a$; but if b = ps, then $a^2 + 2b^2 = a^2 + p(2ps^2) = pr$, so $a^2 = p(r - 2ps^2)$. So $p|a^2$, so p|a (since p is prime), a contradiction. So $p \not| a$ implies $p \not| b$, and then the argument above applies to give a solution to $x^2 \equiv -2 \pmod{p}$. So in either case, $x^2 \equiv -2 \pmod{p}$ has a solution.

20. [NZM p.60, # 60] Show that for any prime number p, the equation $a^2 + 2b^2 = p$ has a solution $a, b \Leftrightarrow$ the equation $x^2 \equiv -2 \pmod{p}$ has a solution x.

If $a^2+2b^2=p$ has a solution, then $a\neq 0$ and $b\neq 0$, since otherwise $p=2b^2$ or $p=a^2$ is not prime. So in particular $a^2< p$ and $b^2< p$, so |a|< p and |b|< p, and so $p\not|a$ and $p\not|b$. So by Problem #19, since p is a prime factor of $p=a^2+2b^2$, the equation $x^2\equiv -2\pmod{p}$ has a solution.

On the other hand, if p is prime and $x^2 \equiv -2 \pmod{p}$ has a solution, then by Problem #16, either $a^2 + 2b^2 = p$ or $a^2 + 2b^2 = 2p$ has a solution. If p is even, then p = 2, and $2 = 0^2 + 2(1)^2$ so $p = a^2 + 2b^2$ has a solution. Otherwise p is odd and either Problem #16 has told us that $a^2 + 2b^2 = p$ has a solution or $a^2 + 2b^2 = 2p$ has a solution. If it is the latter, then by Problem #18, $a^2 + 2b^2 = p$ also has a solution. So in every case, $a^2 + 2b^2 = p$ has a solution. So no matter what prime p we have, if $x^2 \equiv -2 \pmod{p}$ has a solution, then $a^2 + 2b^2 = p$ has a solution.