Math 445 Homework 4

Due Wednesday, September 29

- 16. [NZM p.59, # 56] Suppose p is prime, and $x^2 \equiv -2 \pmod{p}$. By looking at the numbers u+xv for u,v in some range, show that at least one of the equations $a^2+2b^2=p \text{ or } a^2+2b^2=2p$ has a solution.
- 17. [NZM p.60, # 57] Show that $(a^2 + 2b^2)(c^2 + 2d^2) = (ac 2bd)^2 + 2(bc + ad)^2$
- 18. [NZM p.60, # 58] Show that if p is prime and odd and $a^2+2b^2=2p$, then a is even and b is odd. Conclude that $b^2+2(a/2)^2=p$ is a solution in the integers.
- 19. [NZM p.60, # 59] Let p be a prime factor of the number a^2+2b^2 . Show that if $p \not| a$ or $p \not| b$ then the equation $x^2 \equiv -2 \pmod{p}$ has a solution.
- 20. [NZM p.60, # 60] Show that for any prime number p, the equation $a^2 + 2b^2 = p$ has a solution $a, b \Leftrightarrow$ the equation $x^2 \equiv -2 \pmod{p}$ has a solution x.