Math 445 Homework 1 Solutions

1. Show that if $n > 4$ is not prime, then $n|(n−1)!$.

If n is not prime, then $n = ab$, with $1 < a ≤ b < n$. Then a and b are both among the factors of $(n−1)!$. So if they are different, then $ab|(n−1)!$, as desired. If $a = b$, then since both are at least 2, a and $2a$ are both $≤ n−1$; if $2a > n−1$, then (since $b ≥ 2$) $2a ≥ n = ab$, so $b ≤ 2$, so $a = b = 2$ and $n = 4$, a contradiction. So $2a^2|(n−1)!$, so $n = a^2|(n−1)!$.

2. Show that for $n > 1$, $n^4 + 4$ is never prime.

$f(x) = x^4 + 4$ can be factored, over \mathbb{R}, into linear and irreducible quadratic factors. $f(x)$ has no real roots, so it must be the product of quadratics. If we were to make a guess, the best ones would be $(x^2 + ax + 1)(x^2 + bx + 4)$ or $(x^2 + ax + 2)(x^2 + bx + 2)$ or $(x^2 + ax − 1)(x^2 + bx − 4)$ or $(x^2 + ax − 2)(x^2 + bx − 2)$, to get the x^4 and 4 to work out. (Alternatively, we could note that the complex roots are the square roots of $±2i$, which are $1 ± i$ and $−1 ± i$, and pair up the linear factors from the conjugates to find the answer.) Either way, we find that

$$x^4 + 4 = (x^2 + 2x + 2)(x^2 − 2x + 2)$$

Since (from calculus) both of these quadratics are increasing for $x ≥ 1$, and take values 6 and 2 at $x = 2$, for $n > 1$ each factor of $n^4 + 4 = (n^2 + 2n + 2)(n^2 − 2n + 2)$ is an integer greater than 2, so $n^4 + 4$ is composite.

[Or, even better? We find that $x^2 + 2x + 2, x^2 − 2x + 2$ are equal to $±1$ only when $x = ±1$ (by solving the equations!), so for any other integer, they give a non-trivial factorization.]

3. Show, by induction, that $f(n) = \frac{1}{5}n^5 + \frac{1}{3}n^3 + \frac{7}{15}n$ is an integer for every $n ≥ 1$. (Note, however, that it is not a multiple of $n!$)

Base case, $n = 1$: $f(1) = \frac{1}{5} + \frac{1}{3} + \frac{7}{15} = \frac{3}{15} + \frac{5}{15} + \frac{7}{15} = \frac{15}{15} = 1$ is an integer.

Now suppose $f(n) = \frac{1}{5}n^5 + \frac{1}{3}n^3 + \frac{7}{15}n = N$ is an integer. Then

$$f(n + 1) = \frac{1}{5}(n + 1)^5 + \frac{1}{3}(n + 1)^3 + \frac{7}{15}(n + 1)$$

$$= \frac{1}{5}(n^5 + 5n^4 + 10n^3 + 10n^2 + 5n + 1) + \frac{1}{3}(n^3 + 3n^2 + 3n + 1) + \frac{7}{15}(n + 1)$$

$$= \frac{1}{5}n^5 + n^4 + 2n^3 + 2n^2 + n + \frac{1}{5} + \frac{1}{3}n^3 + n^2 + n + \frac{1}{3} + \frac{7}{15}n + \frac{7}{15}$$

$$= \left(\frac{1}{5}n^5 + \frac{1}{3}n^3 \frac{7}{15}n\right) + n^4 + 2n^3 + 2n^2 + n + n^2 + n + \frac{1}{5} + \frac{1}{3} + \frac{1}{15}$$
\[= f(n) + n^4 + 2n^3 + 3n^2 + 2n + f(1)\]

which is (by hypothesis) a sum of six integers, so is an integer. So the inductive step is verified (if \(f(n)\) is an integer then \(f(n+1)\) is an integer), so by induction, \(f(n)\) is an integer for every \(n \geq 1\).

However, \(f(2) = f(1)+1+2+3+2+f(1) = 10\), and so \(f(3) = f(2)+16+16+12+4+f(1) = 59\), which is not a multiple of 3.

4. Show, by induction on \(n\) that

\[\text{[for every integer } x \geq 1, n! \text{ divides } x(x+1)\cdots(x+n-1).]\]

Base case, \(n = 1\): \(1! = 1\) divides anything, including the integer \(x\).

Now suppose that for every \(x \geq 1, n! \text{ divides } x(x+1)\cdots(x+n-1)\). We wish to show that for every \(x \geq 1, (n + 1)! \text{ divides } x(x+1)\cdots(x+n)\). We proceed by induction!

Base case \(x = 1\): \((1+1)\cdots(n+1) = (n+1)!\) is indeed divisible by \((n+1)!\).

Now suppose \((n+1)! \text{ divides } f(x) = x(x+1)\cdots(x+n)\). Then

\[f(x+1) = (x+1)(x+2)\cdots(x+n)(x+n+1) = (x+1)(x+2)\cdots(x+n-1)(x+n) + (x+1)(x+2)\cdots(x+n-1)(n+1) = f(x) + (n+1)(x+1)(x+2)\cdots(x+n-1)]\]

By hypothesis, \((n+1)!|f(x)\), and by the other hypothesis, \(n!|(x+1)(x+2)\cdots(x+n-1)\), so \((x+1)(x+2)\cdots(x+n-1) = An!\) so \((n+1)(x+1)(x+2)\cdots(x+n-1) = An!(n+1) = A(n+1)!\), so \((n+1)!(n+1)((x+1)(x+2)\cdots(x+n-1))\). Therefore, \((n+1)! \text{ divides their sum, } f(x+1)\).

So by induction, for every \(x \geq 1, (n+1)! \text{ divides } x(x+1)\cdots(x+n)\). Therefore, by induction, for every \(n \geq 1\) and every \(x \geq 1, n! \text{ divides } x(x+1)\cdots(x+n-1)\).

[Note: there is a much faster way (if you know a certain formula):

\[
\binom{x+n-1}{n} = \frac{(x+n-1)!}{n!(x-1)!} = \frac{x(x+1)\cdots(x+n-1)}{n!}
\]

is an integer, so of course the bottom divides the top!]

5. For \(a \geq 2\), show that if \(a^n - 1\) is prime, then \(n\) is prime.

It is probably most straightforward to show the contrapositive: if \(n\) is not prime, then \(a^n - 1\) is not prime. Suppose that \(n = rs\), with \(2 \leq r, s\), then

\[a^n - 1 = a^{rs} - 1 = (a^r)^s - 1\]

But since \(x^s - 1 = (x-1)(x^{s-1} + x^{s-2} + \cdots + s + 1)\) we have

\[a^n - 1 = (a^r - 1)(a^{r(s-1)} + a^{r(s-2)} + \cdots + a^r + 1)\]

and since \(a, r, s \geq 2, a^r - 1 \geq 2^2 - 1 = 3\) and \(a^{r(s-1)} + a^{r(s-2)} + \cdots + a^r + 1 \geq a^r + 1 \geq 2^2 + 1 = 5\). So we have found a factorization of \(a^n - 1\) into factors \(\geq 3\), so \(a^n - 1\) is composite.