Math 445 Number Theory

Introduction to/Review of concepts from abstract algebra

An integer p is prime if whenever p = ab with $a, b \in \mathbb{Z}$, either $a = \pm n$ or $b = \pm n$.

[For sanity's sake, we will take the position that primes should <u>also</u> be ≥ 2 .]

Fundamental Theorem of Arithmetic: Every integer $n \geq 2$ can be expressed as a product of primes; $n = p_1 \cdot \dots \cdot p_k$.

If we insist that the primes are written in increasing order, $p_1 \leq \ldots \leq p_k$, then this representation is unique.

The Division Algorithm: For any integers $n \ge 0$ and m > 0, there are *unique* integers q and r with n = mq + r and $0 \le r \le m - 1$.

[Note: this is also true for any integers n, m with $m \neq 0$, although you need to replace "m-1" with "|m-1|".]

The basic idea: keep repeatedly subtracting m from n until what's left is less than m.

Notation: b|a="b" divides a"="b" is a divisor of a"="a" is a multiple of b", means a=bk for some integer k.

If b|a and $a \neq 0$, then $|b| \leq |a|$.

If a|b and b|c, then a|c

If a|c and b|d, then ab|cd

If p is prime and p|ab, then either p|a or p|b

Notation: $(a, b) = \gcd(a, b) = \text{greatest common divisor of } a \text{ and } b$

Different, equivalent, formulations for d = (a, b):

- (1) d|a and d|b, and if c|a and c|b, then $c \leq d$.
- (2) d is the smallest positive number that can be written as d=ax+by with $a,b\in\mathbb{Z}$.
- (3) d|a and d|b, and if c|a and c|b, then c|d.
- (4) d is the only positive divisor of a and b that can be expressed as d = ax + by with $a, b \in \mathbb{Z}$.

If c|a and c|b, then c|(a,b)

If c|ab and (c,a) = 1, then c|b

If a|c and b|c, and (a,b) = 1, then ab|c

If a = bq + r, then (a, b) = (b, r)

Euclidean Algorithm: This last fact gives us a way to compute (a,b), using the division algorithm: Starting with a > b, compute $a = bq_1 + r_1$, so $(a,b) = (b,r_1)$. Then compute $b = r_1q_2 + r_2$, and repeat: $r_{i-1} = r_iq_{i+1} + r_{i+1}$. Continue until $r_{n+1} = 0$, then $(a,b) = (b,r_1) = (r_1,r_2) = \ldots = (r_n,r_{n+1}) = (r_n,0) = r_n$.

Since $b > r_1 > r_2 > r_3 > \dots$, this process must end, by well-orderedness.

We can reverse these calculations to recover (a, b) = ax + by, by rewriting each equation in our algorithm as $r_{i+1} = r_{i-1} - r_i q_{i+1}$, and then repeatedly substituting the higher equations into the lowest one, in turn, working up through the list of equations.

Congruence modulo n: Notation: $a \equiv b \pmod{n}$ (also written $a \equiv b$) means $n \mid (b-a)$

Equivalently: the division algorithm will give the same remainder for a and b when you divide by n Congruence mod n is an equivalence relation

The congruence class of a mod n is the collection of all integers congruent mod n to a:

$$[a]_n = \{b \in \mathbb{Z} : a \equiv b\} = \{b \in \mathbb{Z} : n | (b - a)\}$$

Fermat's Little Theorem. If p is prime and (a,p)=1, then $a^{p-1} \equiv 1$

Because: $(a\cdot 1)(a\cdot 2)(a\cdot 3)\cdots(a\cdot (p-1))\equiv 1\cdot 2\cdot 3\cdots (p-1)$, and $(1\cdot 2\cdot 3\cdots (p-1),p)=1$. Same idea, looking at the a's between 1 and n-1 that are relatively prime to n (and letting $\phi(n)$ be the number of them), gives

If (a,n) = 1, then $a^{\phi(n)} \equiv 1$.

If the prime factorization of n is $p_1^{\alpha_1} \cdots p_k^{\alpha_k}$, then $\phi(n) = [p_1^{\alpha_1 - 1}(p_1 - 1)] \cdots [p_k^{\alpha_k - 1}(p_k - 1)]$

The integers \mathbb{Z} , the integers mod $n \mathbb{Z}_n$, the real numbers \mathbb{R} , the complex numbers \mathbb{C} are all rings.

A homomorphism is a function $\varphi: R \to S$ from a ring R to a ring S satisfying: for any $r, r' \in R$, $\varphi(r + r') = \varphi(r) + \varphi(r')$ and $\varphi(r \cdot r') = \varphi(r) \cdot \varphi(r')$.

The basic idea is that it is a function that "behaves well" with respect to addition and multiplication. An isomorphism is a homomorphism that is both one-to-one and onto. If there is an isomorphism from R to S, we say that R and S are isomorphic, and write $R \cong S$.

Example: if (m,n)=1, then $\mathbb{Z}_{mn}\cong\mathbb{Z}_m\times\mathbb{Z}_n$. The isomorphism is given by $\varphi([x]_{mn})=([x]_m,[x]_n)$

The main ingredients in the proof:

If $\varphi: R \to S$ and $\psi: R \to T$ are ring homomorphisms, then the function $\omega: R \to S \times T$ given by $\omega(r) = (\varphi(r), \psi(r))$ is also a homomorphism.

If m|n, then the function $\varphi: \mathbb{Z}_n \to \mathbb{Z}_m$ given by $\varphi([x]_n) = [x]_m$ is a homomorphism.

Together, these give that the function we want above is a homomorphism. The fact that (m, n) = 1 implies that φ is one-to-one; then the Pigeonhole Principle implies that it is also onto!

The above isomorphism and induction imply that if $n_1, \ldots n_k$ are pairwise relatively prime (i.e., if $i \neq j$ then $(n_i, n_j) = 1$), then

 $\mathbb{Z}_{n_1\cdots n_k}\cong \mathbb{Z}_{n_1}\times \cdots \times \mathbb{Z}_{n_k}$. This implies:

The Chinese Remainder Theorem: If $n_1, \ldots n_k$ are pairwise relatively prime, then for any $a_1, \ldots a_k \in \mathbb{N}$ the system of equations

 $x \equiv a_i \pmod{n_i}, i = 1, \dots k$

has a solution, and any two solutions are congruent modulo $n_1 \cdots n_k$.

A solution can be found by (inductively) replacing a pair of equations $x \equiv a \pmod{n}$, $x \equiv b \pmod{m}$, with a single equation $x \equiv c \pmod{nm}$, by solving the equation a + nk = x = b + mj for k and j, using the Euclidean Algorithm.