
Math 445 Number Theory

Topics for the first exam

An integer p is prime if whenever p = ab with a, b ∈ Z, either a = ±p or b = ±p .
[For sanity’s sake, we will take the position that primes should also be ≥ 2 .]
Primality Tests.

How do you decide if a number n is prime?
Brute force: try to divide every number (better: prime) ≤ n (better ≤ √

n) into n, to locate
a factor.

Fermat’s Little Theorem. If p is prime and (a, p) = 1, then ap−1 ≡ 1(mod p) .
A composite number n for which an−1 ≡ 1(mod n) is called a pseudoprime to the base a. A

composite number which is a pseudoprime to every base a satisfying (a, n) = 1 is called a
Carmichael number.

φ(n) = number of integers a between 1 and n with (a, n) = 1; if n = pα1
1 · · · pαk

k is the prime
factorization of n, then φ(n) = pα1−1

1 (p1 − 1) · · ·pαk−1
k (pk − 1)

Euler’s Theorem.If (a, n) = 1, then aφ(n)(mod n) .
Wilson’s Theorem. p is prime ⇔ (p − 1)! ≡ −1(mod p)
Fermat ⇒ if (a, n) = 1 and an−1 �≡ 1(mod n) then n is not prime.
If p is prime and a2 ≡ 1(mod p), then a ≡ ±1(mod p)
(Miller-Rabin Test.) Given n, set n− 1 = 2kd with d odd. Then if n is prime and (a, n) = 1,

either ad ≡ 1(mod n) or a2id ≡ −1(modn) for some i < k.
If n is not prime, but the above still holds for some a, then n is called a strong pseudoprime

to the base a.
Compositeness test: If ad �≡ ±1(mod n), compute a2id(modn) for i = 1, 2, . . . . If this

sequence hits 1 before hitting −1, or is not 1 for i = k, then n is not prime.
Fact: If n is composite, then it is a strong pseudoprime for at most 1/4 th of the a’s between

1 and n.
Finding Factors.

(Pollard Rho Test.) Idea: if p is a factor of N , then for any two randomly chosen numbers
a abd b, p is more likely to divide b − a than N is.

Procedure: given N , use Miller-Rabin to make sure it is composite! Then pick a fairly
random starting value a1 = a, and a fairly random polynomial with integer coefficients
f(x) (such as f(x) = x2 + b), then compute a2 = f(a1), . . . , an = f(an−1), . . . . Finally,
compute (a2n − an, N) for each n. If this is > 1 and < N , stop: you have found a proper
factor of N . If it gives you N , stop: the test has failed. You should restart with a different
a and/or f .

Basic idea: this will typically find a factor on a timescale on the order of
√

p ≤ N1/4, where
p is the smallest (but unknown!) prime factor of N .
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RSA cryptosystem:

To send and receive messages securely: start by choosing two large primes p, q , set n = pq,
and choose an e relatively prime to (p − 1)(q − 1) . Publish n and e. Privately compute
d with de − x(p − 1)(q − 1) = 1 . To send you a message, we convert the message to a
number A (cutting it into blocks shorter than n if necessary), compute B = Ae (mod n)
and send B. You then compute (because of Euler’s Theorem!) A = Bd (mod n) .

The security of the system rests on the fact that, to the best of our current knowledge, the
fastest way to recover A from B is to determine d (in order to do your calculations), which
seems to require knowing (p− 1)(q − 1), which amounts to knowing p and q, which means
factoring n, which is hard!

Periods of repeating fractions.

For integers n with (10, n) = 1, the fractions a/n have a repeating decimal expansion. E.g,
2/3 = .6666 . . . , 1/7 = .142857142857 . . . , etc.

Determining the length of the period (repeating part) can be done via FLT: 1/7 = .142857142857 . . .
means 1/7 = 142857/106 + 142857/1012 + . . . = 142857/(106 − 1), i.e 7|106 − 1, and 6 is
the smallest power for which this is true.

In general (if (a, n) = 1), we define ordn(a) = k = the smallest positive number with
ak ≡ 1(mod n). Equivalently, it is the largest number satisfying ar ≡ 1(mod n) ⇒
ordn(a)|r . (Therefore, ordn(a)|φ(n), by Euler’s Theorem.)

Generally, then, the period of 1/n = ordn(10), when (10, n) = 1. When (10, n) > 1, we can
write n = 2r5sb = ab with (10, b) = 1, and then write

1
n

=
1
ab

=
A

a
+

B

b
for some integers A, B .

A/a will have a terminating decimal expansion, so 1/n will have some garbage at the begin-
ning , and then repeat with period equal to the period of b.

Gauss conjectured that there are infinitely many primes p whose period is p − 1; this is still
unproved.

Primality tests for special cases.

(Lucas’ Theorem.) If for, each prime p with p|n− 1, there is an a with an−1 ≡ 1(mod n) but
a(n−1)/p �≡ 1(mod n), then n is prime.

Application: look at N = 2k + 1. This could be prime only if k = 2n; otherwise k = 2nd,
d odd, and then 22n

+ 1|(22n

)d + 1 = N . The numbers Fn = 22n

+ 1 are called Fermat
numbers; the ones which are prime are called Fermat primes. The only known Fermat
primes correspond to n = 0, 1, 2, 3, 4; Euler showed that 641|F5, and Fn is known to be
composite for n = 5, . . . , 28. By Lucas’ Thm, Fn is prime ⇔ there is an a with

aFn−1 ≡ 1(mod Fn), but a(Fn−1)/2 �≡ 1(mod Fn) (which really together means a(Fn−1)/2 ≡
−1(mod Fn)

Pepin showed that it if some a will work, then a = 3 will work!
Fermat primes are important in Euclidean geometry; Gauss showed that a regular N -sided

polygon can be constructed with compass and straight-edge ⇔ N is a power of 2 times a
product of distinct Fermat primes.
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Primitive roots.

A number a is called a primitive root of 1 mod n if ordn(a) = φ(n) (the largest it could be).
Strong converse to Lucas’ Thm: If n is prime, then there is a primitive root of 1 mod n (i.e.,

there is one a that will work for every prime p in Lucas’ Thm).
The proof uses the important
(Lagrange’s Theorem.) If p is a prime, and f(x) = anxn + · · ·a1x + a0 is a polynomial with

integer coefficients, an �≡ 0(mod p), then the equation
f(x) ≡ 0(mod p)

has at most n solutions.
This implies that if p is prime and d|p − 1, then the equation xd ≡ 1(mod p) has exactly d

solutions.
Finding a primitive root mod p a prime: for each prime pi|p − 1, find ai with a

(p−1)/pi

i �≡ 1
(mod p), then set a = the product of the ai.

Lemma: If ordn(a) = m, then ordn(ak) = m/(m, k)
Corollary: If p is prime, then there are exactly φ(p− 1) (incongruent mod p) primitive roots

of 1 mod p: find one, a, then the rest are ak for 1 ≤ k ≤ p and (k, p − 1) = 1.

Pythagorian triples:

If a2+b2 = c2, then we call (a, b, c) a Pythagorean triple. If (a, b) = 1 then ((a, c) = (b, c) = 1
and) we call the triple primitive. For a primitive triple, c must be odd, a (say) even and b
odd. Then because

Proposition: If (x, y) = 1 and xy = c2, then x = u2, y = v2 for some integers u, v .
we can write a = 2uv , b = u2 −v2 , and c = u2 +v2 for some integers u, v ; these formulas
describe all primitive Pythagorean triples.

Sums of squares.

If n = a2 + b2, then n ≡ 0, 1, or 2(mod 4). Since the product of the sum of two squares
(a2 + b2)(c2 + d2) = (ac + bd)2 + (ad − bc)2 = (ad + bc)2 + (ac − bd)2

is the sum of two squares, and

2n = (a2 + b2) ⇒ n = (
a − b

2
)2 + (

a + b

2
)2 and m = (a2 + b2) ⇒ 2m = (a − b)2 + (a + b)2

it suffices to focus on odd numbers, and (more or less) odd primes.
If p ≡ 1(mod 4) is prime, then p is the sum of two squares.
If p ≡ 3(mod 4) is prime and p|a2 + b2, then p|a and p|b.
Together, these imply that a positive integer n can be expressed as the sum of two squares

⇔ in the prime factorization of n, every prime congruent to 3 mod 4 appears with even
(possibly 0) exponent.

nth roots modulo a prime:.

If p is prime and (a, p) = 1, then (setting r = (n, p − 1) the equation xn ≡ a(mod p) has
r solutions if a(p−1)/r ≡ 1(mod p)
no solution if a(p−1)/r �≡ 1(mod p)

This result does not really require p to be prime, only that there be a primitive root mod p.
The exact statement is:
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If there is primitive root of 1 mod N and (a, N) = 1, then (setting r = (n, φ(N)) the equation
xn ≡ a(mod N) has

r solutions if aφ(N)/r ≡ 1(mod N)
no solution if aφ(N)/r �≡ 1(mod N)

For example, every odd prime power pk has a primitive root. In fact, if b is a primitive root
mod p, then all but at most one of b + kp, 0 ≤ k ≤ p − 1 is a primitive root mod p2 ; and
if b is a primitive root mod p2, then it is a primitive root mod pk for all k ≥ 2 .

(Euler’s Criterion.) The equation x2 ≡ a(mod p) has a solution (p = odd prime) ⇔ a(p−1)/2 ≡
1(mod p) ; it then has two solutions (x and −x).

The equation x2 ≡ −1(mod p) has a solution ⇔ (−1)(p−1)/2 ≡ 1(mod p) ⇔ p = 2 or
p ≡ 1(mod 4)

If f is a polynomial with integer coefficients and (M, N) = 1, then the congruence equa-
tion f(x) ≡ 0 (mod MN) has a solution ⇔ the equations f(x) ≡ 0 (mod M) and
f(x) ≡ 0 (mod N) both do.

In particular, for f(x) = a polynomial with integer coefficients, let S(n) = the number of
(incongruent, mod n) solutions to the congruence equation f(x) ≡ 0(mod n). Then:

If (M, N) = 1, then S(MN) = S(M) × S(N). The obvious generalization follows by induc-
tion. So: to decide if a congruence equation has a solution (and how many), it suffices to
decide this for the prime power factors of the modulus. So we can, for example, decide
if xn ≡ a (mod N) has any solutions (and how many) for every odd N and (a, N) = 1 .
Some day we should handle powers of 2, too....
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