Math 445 Number Theory

Topics for the first exam

An integer \(p \) is **prime** if whenever \(p = ab \) with \(a, b \in \mathbb{Z} \), either \(a = \pm p \) or \(b = \pm p \).

[For sanity’s sake, we will take the position that primes should also be \(\geq 2 \).]

Primality Tests.

How do you decide if a number \(n \) is prime?

Brute force: try to divide every number (better: prime) \(\leq n \) (better \(\leq \sqrt{n} \)) into \(n \), to locate a factor.

Fermat’s Little Theorem. If \(p \) is prime and \((a, p) = 1 \), then \(a^{p-1} \equiv 1 \pmod{p} \).

A composite number \(n \) for which \(a^{n-1} \equiv 1 \pmod{n} \) is called a **pseudoprime to the base** \(a \). A composite number which is a pseudoprime to every base \(a \) satisfying \((a, n) = 1 \) is called a **Carmichael number**.

\[
\phi(n) = \text{number of integers } a \text{ between } 1 \text{ and } n \text{ with } (a, n) = 1; \text{ if } n = p_1^{\alpha_1} \cdots p_k^{\alpha_k} \text{ is the prime factorization of } n, \text{ then } \phi(n) = p_1^{\alpha_1 - 1}(p_1 - 1) \cdots p_k^{\alpha_k - 1}(p_k - 1)
\]

Euler’s Theorem. If \((a, n) = 1 \), then \(a^{\phi(n)} \equiv 1 \pmod{n} \).

Wilson’s Theorem. \(p \) is prime \(\iff (p - 1)! \equiv -1 \pmod{p} \).

Fermat \(\Rightarrow \) if \((a, n) = 1 \) and \(a^{n-1} \not\equiv 1 \pmod{n} \) then \(n \) is **not** prime.

If \(p \) is prime and \(a^2 \equiv 1 \pmod{p} \), then \(a \equiv \pm 1 \pmod{p} \).

(Miller-Rabin Test.) Given \(n \), set \(n - 1 = 2^kd \) with \(d \) odd. Then if \(n \) is prime and \((a, n) = 1 \), either \(a^d \equiv 1 \pmod{n} \) or \(a^{2^id} \equiv -1 \pmod{n} \) for some \(i < k \).

If \(n \) is **not** prime, but the above still holds for some \(a \), then \(n \) is called a **strong pseudoprime to the base** \(a \).

Compositeness test: If \(a^d \not\equiv \pm 1 \pmod{n} \), compute \(a^{2^id} \pmod{n} \) for \(i = 1, 2, \ldots \). If this sequence hits 1 **before** hitting \(-1\), or is not 1 for \(i = k \), then \(n \) is **not** prime.

Fact: If \(n \) is composite, then it is a strong pseudoprime for **at most** \(1/4 \) th of the \(a \)'s between 1 and \(n \).

Finding Factors.

(Pollard Rho Test.) Idea: if \(p \) is a factor of \(N \), then for any two randomly chosen numbers \(a \) and \(b \) is more likely to divide \(b - a \) than \(N \) is.

Procedure: given \(N \), use Miller-Rabin to make sure it is composite! Then pick a fairly random starting value \(a_1 = a \), and a fairly random polynomial with integer coefficients \(f(x) \) (such as \(f(x) = x^2 + b \)), then compute \(a_2 = f(a_1), \ldots, a_n = f(a_{n-1}), \ldots \). Finally, compute \((a_{2n} - a_n, N) \) for each \(n \). If this is \(> 1 \) and \(< N \), stop: you have found a proper factor of \(N \). If it gives you \(N \), stop: the test has failed. You should restart with a different \(a \) and/or \(f \).

Basic idea: this will typically find a factor on a timescale on the order of \(\sqrt{p} \leq N^{1/4} \), where \(p \) is the smallest (but unknown!) prime factor of \(N \).
RSA cryptosystem:
To send and receive messages securely: start by choosing two large primes \(p, q \), set \(n = pq \), and choose an \(e \) relatively prime to \((p - 1)(q - 1) \). Publish \(n \) and \(e \). Privately compute \(d \) with \(de - x(p - 1)(q - 1) = 1 \). To send you a message, we convert the message to a number \(A \) (cutting it into blocks shorter than \(n \) if necessary), compute \(B = A^e \pmod{n} \) and send \(B \). You then compute (because of Euler’s Theorem!) \(A = B^d \pmod{n} \).

The security of the system rests on the fact that, to the best of our current knowledge, the fastest way to recover \(A \) from \(B \) is to determine \(d \) (in order to do your calculations), which seems to require knowing \((p - 1)(q - 1) \), which amounts to knowing \(p \) and \(q \), which means factoring \(n \), which is hard!

Periods of repeating fractions.
For integers \(n \) with \((10, n) = 1 \), the fractions \(a/n \) have a repeating decimal expansion. E.g, \(2/3 = .6666\ldots, 1/7 = .142857142857\ldots \), etc.

Determining the length of the period (repeating part) can be done via FLT: \(1/7 = .142857142857\ldots \) means \(1/7 = 142857/10^6 + 142857/10^{12} + \ldots = 142857/(10^6 - 1) \), i.e \(7|10^6 - 1 \), and \(6 \) is the smallest power for which this is true.

In general (if \((a, n) = 1 \)), we define \(\text{ord}_n(a) = k = \text{the smallest positive number with } a^k \equiv 1(\text{mod } n) \). Equivalently, it is the largest number satisfying \(a^r \equiv 1(\text{mod } n) \Rightarrow \text{ord}_n(a)|r \). (Therefore, \(\text{ord}_n(a)\phi(n) \), by Euler’s Theorem.)

Generally, then, the period of \(1/n = \text{ord}_n(10) \), when \((10, n) = 1 \). When \((10, n) > 1 \), we can write \(n = 2^s5^b = ab \) with \((10, b) = 1 \), and then write \(1/n = 1/ab = A/a + B/b \) for some integers \(A, B \).

\(A/a \) will have a terminating decimal expansion, so \(1/n \) will have some garbage at the beginning, and then repeat with period equal to the period of \(b \).

Gauss conjectured that there are infinitely many primes \(p \) whose period is \(p - 1 \); this is still unproved.

Primality tests for special cases.
(Lucas’ Theorem.) If for, each prime \(p \) with \(p|n - 1 \), there is an \(a \) with \(a^{n-1} \equiv 1(\text{mod } n) \) but \(a^{(n-1)/p} \neq 1(\text{mod } n) \), then \(n \) is prime.

Application: look at \(N = 2^k + 1 \). This could be prime only if \(k = 2^n \); otherwise \(k = 2^nd \), \(d \) odd, and then \(2^{2^n} + 1|(2^{2^n})^d + 1 = N \). The numbers \(F_n = 2^{2^n} + 1 \) are called Fermat numbers; the ones which are prime are called Fermat primes. The only known Fermat primes correspond to \(n = 0, 1, 2, 3, 4 \); Euler showed that \(641|F_5 \), and \(F_n \) is known to be composite for \(n = 5, \ldots, 28 \). By Lucas’ Thm, \(F_n \) is prime \(\iff \) there is an \(a \) with \(a^{F_n-1} \equiv 1(\text{mod } F_n) \), but \(a^{(F_n-1)/2} \neq 1(\text{mod } F_n) \) (which really together means \(a^{(F_n-1)/2} \equiv -1(\text{mod } F_n) \)).

Pepin showed that if some \(a \) will work, then \(a = 3 \) will work!

Fermat primes are important in Euclidean geometry; Gauss showed that a regular \(N \)-sided polygon can be constructed with compass and straight-edge \(\iff \) \(N \) is a power of 2 times a product of distinct Fermat primes.
Primitive roots.

A number \(a \) is called a primitive root of \(1 \mod n \) if \(\text{ord}_n(a) = \phi(n) \) (the largest it could be). Strong converse to Lucas’ Thm: If \(n \) is prime, then there is a primitive root of \(1 \mod n \) (i.e., there is one \(a \) that will work for every prime \(p \) in Lucas’ Thm).

The proof uses the important

(Lagrange’s Theorem.) If \(p \) is a prime, and \(f(x) = a_nx^n + \cdots + a_1x + a_0 \) is a polynomial with integer coefficients, \(a_n \not\equiv 0 \mod p \), then the equation

\[
 f(x) \equiv 0 \mod p
\]

has at most \(n \) solutions.

This implies that if \(p \) is prime and \(d|p-1 \), then the equation \(x^d \equiv 1 \mod p \) has exactly \(d \) solutions.

Finding a primitive root mod \(p \) a prime: for each prime \(p_i|p-1 \), find \(a_i \) with \(a_i^{(p-1)/p_i} \not\equiv 1 \mod p \), then set \(a = \) the product of the \(a_i \).

Lemma: If \(\text{ord}_n(a) = m \), then \(\text{ord}_n(a^k) = m/(m,k) \)

Corollary: If \(p \) is prime, then there are exactly \(\phi(p-1) \) (incongruent mod \(p \)) primitive roots of \(1 \mod p \): find one, \(a \), then the rest are \(a^k \) for \(1 \leq k \leq p \) and \((k,p-1) = 1 \).

Pythagorean triples:

If \(a^2 + b^2 = c^2 \), then we call \((a, b, c)\) a Pythagorean triple. If \((a, b) = 1\) then \((a, c) = (b, c) = 1\) and we call the triple primitive. For a primitive triple, \(c \) must be odd, \(a \) (say) even and \(b \) odd. Then because

Proposition: If \((x, y) = 1\) and \(xy = c^2 \), then \(x = u^2, y = v^2 \) for some integers \(u, v \).

we can write \(a = 2uv \), \(b = u^2 - v^2 \), and \(c = u^2 + v^2 \) for some integers \(u, v \); these formulas describe all primitive Pythagorean triples.

Sums of squares.

If \(n = a^2 + b^2 \), then \(n \equiv 0, 1, \text{ or } 2 \mod 4 \). Since the product of the sum of two squares

\[
 (a^2 + b^2)(c^2 + d^2) = (ac + bd)^2 + (ad - bc)^2 = (ad + bc)^2 + (ac - bd)^2
\]

is the sum of two squares, and

\[
 2n = (a^2 + b^2) \Rightarrow n = \left(\frac{a-b}{2}\right)^2 + \left(\frac{a+b}{2}\right)^2 \text{ and } m = (a^2 + b^2) \Rightarrow 2m = (a-b)^2 + (a+b)^2
\]

it suffices to focus on odd numbers, and (more or less) odd primes.

If \(p \equiv 1 \mod 4 \) is prime, then \(p \) is the sum of two squares.

If \(p \equiv 3 \mod 4 \) is prime and \(p|a^2 + b^2 \), then \(p|a \) and \(p|b \).

Together, these imply that a positive integer \(n \) can be expressed as the sum of two squares \(\Leftrightarrow \) in the prime factorization of \(n \), every prime congruent to 3 mod 4 appears with even (possibly 0) exponent.

\(n^{th} \) roots modulo a prime:

If \(p \) is prime and \((a, p) = 1\), then (setting \(r = (n, p-1) \) the equation \(x^n \equiv a \mod p \) has

\[
 r \text{ solutions if } a^{(p-1)/r} \equiv 1 \mod p \\
 \text{no solution if } a^{(p-1)/r} \not\equiv 1 \mod p
\]

This result does not really require \(p \) to be prime, only that there be a primitive root mod \(p \).

The exact statement is:
If there is primitive root of 1 mod N and $(a, N) = 1$, then (setting $r = (n, \phi(N))$) the equation $x^n \equiv a \pmod{N}$ has

- r solutions if $a^{\phi(N)/r} \equiv 1 \pmod{N}$
- no solution if $a^{\phi(N)/r} \not\equiv 1 \pmod{N}$

For example, every odd prime power p^k has a primitive root. In fact, if b is a primitive root mod p, then all but at most one of $b + kp, 0 \leq k \leq p - 1$ is a primitive root mod p^2; and if b is a primitive root mod p^2, then it is a primitive root mod p^k for all $k \geq 2$.

(Euler’s Criterion.) The equation $x^2 \equiv a \pmod{p}$ has a solution ($p = $ odd prime) $\iff a^{(p-1)/2} \equiv 1 \pmod{p}$; it then has two solutions (x and $-x$).

The equation $x^2 \equiv -1 \pmod{p}$ has a solution $\iff (-1)^{(p-1)/2} \equiv 1 \pmod{p} \iff p = 2$ or $p \equiv 1 \pmod{4}$

If f is a polynomial with integer coefficients and $(M, N) = 1$, then the congruence equation $f(x) \equiv 0 \pmod{MN}$ has a solution \iff the equations $f(x) \equiv 0 \pmod{M}$ and $f(x) \equiv 0 \pmod{N}$ both do.

In particular, for $f(x) = a$ polynomial with integer coefficients, let $S(n) =$ the number of (incongruent, mod n) solutions to the congruence equation $f(x) \equiv 0 \pmod{n}$. Then:

If $(M, N) = 1$, then $S(MN) = S(M) \times S(N)$. The obvious generalization follows by induction. So: to decide if a congruence equation has a solution (and how many), it suffices to decide this for the prime power factors of the modulus. So we can, for example, decide if $x^n \equiv a \pmod{N}$ has any solutions (and how many) for every odd N and $(a, N) = 1$.

Some day we should handle powers of 2, too....