Math 445 Number Theory

Topics for the first exam

An integer p is prime if whenever p = ab with a,b € Z, either a = tp or b= +p .
[For sanity’s sake, we will take the position that primes should also be > 2 ]

Primality Tests.

How do you decide if a number n is prime?

Brute force: try to divide every number (better: prime) < n (better < y/n) into n, to locate
a factor.

Fermat’s Little Theorem. If p is prime and (a,p) = 1, then a?~! = 1(mod p) .

A composite number n for which a”~! = 1(mod n) is called a pseudoprime to the base a. A
composite number which is a pseudoprime to every base a satisfying (a,n) =1 is called a
Carmichael number.

* is the prime

¢(n) = number of integers a between 1 and n with (a,n) = 1; if n = p{"* ---pp
factorization of n, then ¢(n) = p* ' (p1 — 1) - pi* ' (pp — 1)

Euler’s Theorem.If (a,n) = 1, then a®™ (mod n) .

Wilson’s Theorem. p is prime < (p — 1)l = —1(mod p)

Fermat = if (a,n) =1 and a"~! # 1(mod n) then n is not prime.

If p is prime and a? = 1(mod p), then a = 4+1(mod p)

(Miller-Rabin Test.) Given n, set n — 1 = 2¥d with d odd. Then if n is prime and (a,n) = 1,
either a? = 1(mod n) or a®'? = —1(modn) for some i < k.

If n is not prime, but the above still holds for some a, then n is called a strong pseudoprime
to the base a.

Compositeness test: If a¢ # +1(mod n), compute aQid(modn) for i = 1,2,... . If this
sequence hits 1 before hitting —1, or is not 1 for ¢ = k, then n is not prime.

Fact: If n is composite, then it is a strong pseudoprime for at most 1/4 th of the a’s between
1 and n.

Finding Factors.

(Pollard Rho Test.) Idea: if p is a factor of N, then for any two randomly chosen numbers
a abd b, p is more likely to divide b — a than N is.

Procedure: given N, use Miller-Rabin to make sure it is composite! Then pick a fairly
random starting value a; = a, and a fairly random polynomial with integer coefficients
f(x) (such as f(z) = 22 +b), then compute as = f(a1),...,a, = f(an_1),... . Finally,
compute (ag, — an, N) for each n. If this is > 1 and < N, stop: you have found a proper
factor of N. If it gives you N, stop: the test has failed. You should restart with a different
a and/or f.

Basic idea: this will typically find a factor on a timescale on the order of \/p < N 1/4 where
p is the smallest (but unknown!) prime factor of V.



RSA cryptosystem:

To send and receive messages securely: start by choosing two large primes p, q , set n = pq,
and choose an e relatively prime to (p — 1)(¢ — 1) . Publish n and e. Privately compute
d with de — x(p — 1)(¢ — 1) = 1 . To send you a message, we convert the message to a
number A (cutting it into blocks shorter than n if necessary), compute B = A° (mod n)
and send B. You then compute (because of Euler’s Theorem!) A = B¢ (mod n) .

The security of the system rests on the fact that, to the best of our current knowledge, the
fastest way to recover A from B is to determine d (in order to do your calculations), which
seems to require knowing (p — 1)(¢ — 1), which amounts to knowing p and ¢, which means
factoring n, which is hard!

Periods of repeating fractions.

For integers n with (10,n) = 1, the fractions a/n have a repeating decimal expansion. E.g,
2/3 =.6666..., 1/7 = .142857142857 ..., etc.
Determining the length of the period (repeating part) can be done via FLT: 1/7 = .142857142857 . ..

means 1/7 = 142857/10° + 142857/10'2 + ... = 142857/(10% — 1), i.e 7[10° — 1, and 6 is
the smallest power for which this is true.

In general (if (a,n) = 1), we define ord,(a) = k = the smallest positive number with
a® = 1(mod n). Equivalently, it is the largest number satisfying a” = 1(mod n) =

ordy(a)|r . (Therefore, ord,, (a)|¢(n), by Euler’s Theorem.)

Generally, then, the period of 1/n = ord,,(10), when (10,n) = 1. When (10,n) > 1, we can
write n = 2"5°b = ab with (10,b) = 1, and then write

1 1 A

— = — = — + — for some integers A, B .

n ab a b

A/a will have a terminating decimal expansion, so 1/n will have some garbage at the begin-
ning , and then repeat with period equal to the period of b.

Gauss conjectured that there are infinitely many primes p whose period is p — 1; this is still

unproved.
Primality tests for special cases.

(Lucas’ Theorem.) If for, each prime p with p|n — 1, there is an a with a”~! = 1(mod n) but
a™=1/P £ 1(mod n), then n is prime.

Application: look at N = 2¥ + 1. This could be prime only if k = 2"; otherwise k = 2"d,
d odd, and then 22" +1[(22")? + 1 = N. The numbers F,, = 22" + 1 are called Fermat
numbers; the ones which are prime are called Fermat primes. The only known Fermat
primes correspond to n = 0,1,2,3,4; Euler showed that 641|F5, and F), is known to be
composite for n =5,...,28. By Lucas’ Thm, F;, is prime < there is an a with

a1 = 1(mod F,), but a¥»=1/2 % 1(mod F,) (which really together means af»=1)/2 =
—1(mod F},)

Pepin showed that it if some a will work, then a = 3 will work!

Fermat primes are important in Euclidean geometry; Gauss showed that a regular N-sided
polygon can be constructed with compass and straight-edge < N is a power of 2 times a
product of distinct Fermat primes.



Primitive roots.

A number a is called a primitive root of 1 mod n if ord,(a) = ¢(n) (the largest it could be).

Strong converse to Lucas’ Thm: If n is prime, then there is a primitive root of 1 mod n (i.e.,
there is one a that will work for every prime p in Lucas’ Thm).

The proof uses the important

(Lagrange’s Theorem.) If p is a prime, and f(x) = ap,z™ + - - -a1x + ag is a polynomial with
integer coefficients, a,, #Z 0(mod p), then the equation

f(z) = 0(mod p)

has at most n solutions.

This implies that if p is prime and d|p — 1, then the equation 2¢ = 1(mod p) has ezactly d
solutions.

Finding a primitive root mod p a prime: for each prime p;|p — 1, find a; with al(-p_l)/pi Zz 1
(mod p), then set a = the product of the a;.

Lemma: If ord,(a) = m, then ord,(a*) = m/(m,k)

Corollary: If p is prime, then there are exactly ¢(p — 1) (incongruent mod p) primitive roots
of 1 mod p: find one, a, then the rest are a* for 1 <k <pand (k,p—1) = 1.

Pythagorian triples:

If a® 4+ b2 = ¢2, then we call (a, b, ¢) a Pythagorean triple. If (a,b) = 1 then ((a,c) = (b,c) =1
and) we call the triple primitive. For a primitive triple, ¢ must be odd, a (say) even and b
odd. Then because

Proposition: If (z,y) = 1 and xy = ¢?, then x = u?,y = v? for some integers u,v .
we can write a = 2uv , b= u? —v? , and ¢ = u? +v? for some integers u, v ; these formulas

describe all primitive Pythagorean triples.
Sums of squares.

If n = a? + b?%, then n =0, 1, or 2(mod 4). Since the product of the sum of two squares
(a® +b)(c® + d?) = (ac+ bd)? + (ad — be)? = (ad + be)? + (ac — bd)?
is the sum of two squares, and

2n:(a2+b2):>n:(aT_b)2+( )2 and m = (a® +b%) = 2m = (a — b)% + (a + b)?

it suffices to focus on odd numbers, and (more or less) odd primes.

a+b

If p = 1(mod 4) is prime, then p is the sum of two squares.

If p = 3(mod 4) is prime and p|a® + b2, then p|a and p|b.

Together, these imply that a positive integer n can be expressed as the sum of two squares
< in the prime factorization of n, every prime congruent to 3 mod 4 appears with even
(possibly 0) exponent.

n'* roots modulo a prime:.

If p is prime and (a,p) = 1, then (setting r = (n,p — 1) the equation 2" = a(mod p) has
7 solutions if a®~1/" = 1(mod p)
no solution if a»~1/" % 1(mod p)

This result does not really require p to be prime, only that there be a primitive root mod p.
The exact statement is:



If there is primitive root of 1 mod N and (a, N) = 1, then (setting r = (n, ¢(N)) the equation
2™ = a(mod N) has
r solutions if a®™)/™ = 1(mod N)
no solution if a®™)/7 # 1(mod N)

For example, every odd prime power p* has a primitive root. In fact, if b is a primitive root
mod p, then all but at most one of b+ kp,0 < k < p — 1 is a primitive root mod p? ; and
if b is a primitive root mod p2, then it is a primitive root mod p* for all k > 2 .

(Euler’s Criterion.) The equation 22 = a(mod p) has a solution (p = odd prime) < a(P~1/2 =
1(mod p) ; it then has two solutions (x and —z).

The equation 2> = —1(mod p) has a solution < (—1)P~1/2 = 1(mod p) < p = 2 or
p = 1(mod 4)

If f is a polynomial with integer coefficients and (M, N) = 1, then the congruence equa-
tion f(x) =0 (mod MN) has a solution < the equations  f(z) =0 (mod M)  and
f(x) =0 (mod N)  both do.

In particular, for f(x) = a polynomial with integer coefficients, let S(n) = the number of
(incongruent, mod n) solutions to the congruence equation  f(z) = 0(mod n). Then:
If (M,N)=1, then S(MN) = S(M) x S(N). The obvious generalization follows by induc-
tion. So: to decide if a congruence equation has a solution (and how many), it suffices to
decide this for the prime power factors of the modulus. So we can, for example, decide
if 2" = a (mod N) has any solutions (and how many) for every odd N and (a,N) = 1.

Some day we should handle powers of 2, too....



