Math 445 Number Theory
December 3, 2004

Elliptic curves: f(z,y) =y? — (az® + bz® + cx + d) = y* — q(z) C¢(R) is an elliptic curve if f has
no linear factors and Cs(R) has no singular points.

Verifying this, over R can be hard! But if we work over C, we have
Fact: C;(C) is an elliptic curve (which implies that C¢(R) is) < ¢(z) has no repeated root.

An elliptic curve is a cubic curve. So two points on the curve A, B can be used to find a third, C, as
C = the other point lying on LNCs(R), where L = the line through A and B . This can be used to
define a product on C;(R) , C = AB . (If A= B, we can use L = the tangent line through A.) This
product, unfortunately, is not very well-behaved; for example it isn’t associative. An example: of
AA = B, then AB = A, so A(AB) = AA = B. But (AA)B = BB = the third point on the tangent
line through B, which is can’t be A, since then the line through A and B is tangent at both A and
B, so the cubic equation f(x, mz + r) = 0 has two double roots!

But this can be remedied, by introducing a second binary operation, +, defined as follows. Let
0 € C¢(R) be any point, and define, for A, B € Cf(R), A+ B = 0(AB) . This addition is associative,
and in fact, turns C¢(R) into an abelian group! In particular, we have

A+ B =B+ A (since AB = C = BA is the third point on the line through A, B)

A+ 0= A (since if AQ = C, then A+ 0 = 0(A0) = 0C' = A, since 0, A, C are the three points of
some L NC¢(R)

For every A there is exactly one B with A+ B =0; A+ B = 0(AB) = 0 means that the line through
0 and AB is tangent at 0. There is only only such line, so AB must be 00. So B = A(AB) = A(00)
is determined by A, and we can check that in fact A+ B = 0(AB) =0(00) =0 .

Associativity is the fun one! See the second page.....

But what does this mean? It means that an elliptic curve C;(R forms an (abelian) group under this
addition! And if 0 is chosen with rational coordinates (assuming C;(R has a rational point), then the
chord-and-tangent claculations in the addition will always give rational points when starting from
rational points. That is, C¢(Q is also an abelian group under this operation!

For the case of elliptic curves, with polynomial f(x,y) = y*— (az®+bx? +cx +d), a particularly nice
choice for 0 is the “point at infinity”, since it simplifies many calculations. A formal approach to
this requires us to projectivize everything, which means to think, instead of f, of the homogeneous
polynomial F(z,y) = y?z — (azx3+bx?2+ cxz? +dz3), which has solution (0, 1, 0), which “represents”
vertical lines in the plane. But the upshot of choosing 0 at infinity is that if A = (a1, a2), then
0A = (a1, —asg) (since the line from A to “vertical lines” is the vertical line through A !). This
allows us to write formulas for A+ B = 0(AB) and 2A = 0(AA) . For the “normalized” polynomials
y? =23 +ax+b , if A = (a1,a2) and B = (by,bs), then a little computation with chords and
tangents reveals:
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Note that, in the first case, when a; = b1, and in the second case, when a, = 0, that the resulting
point is the point at infinity (the line used in the calculation is a vertical line). So we must treat
[0:1:0] (as it is usually written) as a (rational) point on the curve!



A+ (B+C)=(A+ B)+ C : this is the fun one! This says that  0(A(0(BC))) = 0((0(AB))C)
, so we need to show that  A(0(BC)) = (0(AB))C . And how do you show this?! Well, we use a
little

Lemma: If f(x,y),g(x,y) are cubic polynomials, and Pp,...,Py € Cf(RNCy(R, with Py, P>, Ps
lying on a line L (which is not contained in C¢(R), then there is a quadratic polynomial ¢(x,y) with
Py,... . PyeCy(R.

And the point to this result is that, typically, you can’t expect 6 points chosen at random to lie on
a quadratic (i.e., on a conic section). so this is really saying something.

Setting the proof of this aside for the moment, to show associativity, start with a cubic curve C¢(R
(which contains no line), and set

P1 = B,P4 = AB,P7 =A (all on a line L1 . Ll(:l:,y) = O)

P, =B, P;=0,P; =0(BC) (on a line Ly(z,y) = 0)

Py =C,P; —0(AB), Py = (0(AB))C (on a line L3(z,y) =0

These points all lie on Cy(R (since A, B,C,0 do), and they also lie on C4(R , where g(z,y) =
Li(z,y)Lo(x,y)L3(x,y) . Furthermore, Py, Py, P3 lie on a line L. In the generic case, where all 9
of these points are distinct, the lemma lets us conclude that the remaining 6 points Py, ..., Py lie
on a quadratic. But! Py, P5, P also lie on a lineL’ , so L' C C¢qgR, since L hits the quadratic in
3 > 2=degree(q) points. So, q is really a product of linear functions, implying that P;, Ps, Py lie on
a line, since otherwise one of these lies on L', implying that it hits C;(R in 4 > 3=degree(f) points,
so L' C Cs(R, a contradiction. But this means that P; Py = Py, i.e., A(0(BC)) = (0(AB))C'!

If these 9 points are not all distinct, we appeal to “continuity”, by finding a nearby generic situation;
the limits of 3 sequences of points lying on lines is 3 points on a line. The details of this can (sort
of) be found in the text.....



