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Elliptic curves: f(x, y) = y2 − (ax3 + bx2 + cx + d) = y2 − q(x) Cf (R) is an elliptic curve if f has
no linear factors and Cf (R) has no singular points.
Verifying this, over R can be hard! But if we work over C, we have
Fact: Cf (C) is an elliptic curve (which implies that Cf (R) is) ⇔ q(x) has no repeated root.
An elliptic curve is a cubic curve. So two points on the curve A, B can be used to find a third, C, as
C = the other point lying on L∩Cf (R), where L = the line through A and B . This can be used to
define a product on Cf (R) , C = AB . (If A = B, we can use L = the tangent line through A.) This
product, unfortunately, is not very well-behaved; for example it isn’t associative. An example: of
AA = B, then AB = A, so A(AB) = AA = B. But (AA)B = BB = the third point on the tangent
line through B, which is can’t be A, since then the line through A and B is tangent at both A and
B, so the cubic equation f(x, mx + r) = 0 has two double roots!

But this can be remedied, by introducing a second binary operation, +, defined as follows. Let
0 ∈ Cf (R) be any point, and define, for A, B ∈ Cf (R), A+B = 0(AB) . This addition is associative,
and in fact, turns Cf (R) into an abelian group! In particular, we have
A + B = B + A (since AB = C = BA is the third point on the line through A, B)
A + 0 = A (since if A0 = C, then A + 0 = 0(A0) = 0C = A, since 0, A, C are the three points of
some L ∩ Cf (R)
For every A there is exactly one B with A+B = 0 ; A+B = 0(AB) = 0 means that the line through
0 and AB is tangent at 0. There is only only such line, so AB must be 00. So B = A(AB) = A(00)
is determined by A, and we can check that in fact A + B = 0(AB) = 0(00) = 0 .
Associativity is the fun one! See the second page.....

But what does this mean? It means that an elliptic curve Cf (R forms an (abelian) group under this
addition! And if 0 is chosen with rational coordinates (assuming Cf (R has a rational point), then the
chord-and-tangent claculations in the addition will always give rational points when starting from
rational points. That is, Cf (Q is also an abelian group under this operation!
For the case of elliptic curves, with polynomial f(x, y) = y2−(ax3 +bx2 +cx+d), a particularly nice
choice for 0 is the “point at infinity”, since it simplifies many calculations. A formal approach to
this requires us to projectivize everything, which means to think, instead of f , of the homogeneous
polynomial F (x, y) = y2z−(ax3+bx2z+cxz2 +dz3), which has solution (0, 1, 0), which “represents”
vertical lines in the plane. But the upshot of choosing 0 at infinity is that if A = (a1, a2), then
0A = (a1,−a2) (since the line from A to “vertical lines” is the vertical line through A !). This
allows us to write formulas for A+B = 0(AB) and 2A = 0(AA) . For the “normalized” polynomials
y2 = x3 + ax + b , if A = (a1, a2) and B = (b1, b2), then a little computation with chords and
tangents reveals:
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Note that, in the first case, when a1 = b1, and in the second case, when a2 = 0, that the resulting
point is the point at infinity (the line used in the calculation is a vertical line). So we must treat
[0 : 1 : 0] (as it is usually written) as a (rational) point on the curve!



A + (B + C) = (A + B) + C : this is the fun one! This says that 0(A(0(BC))) = 0((0(AB))C)
, so we need to show that A(0(BC)) = (0(AB))C . And how do you show this?! Well, we use a
little
Lemma: If f(x, y), g(x, y) are cubic polynomials, and P1, . . . , P9 ∈ Cf (R ∩ Cg(R, with P1, P2, P3

lying on a line L (which is not contained in Cf (R), then there is a quadratic polynomial q(x, y) with
P4, . . . , P9 ∈ Cq(R .
And the point to this result is that, typically, you can’t expect 6 points chosen at random to lie on
a quadratic (i.e., on a conic section). so this is really saying something.
Setting the proof of this aside for the moment, to show associativity, start with a cubic curve Cf (R
(which contains no line), and set
P1 = B, P4 = AB, P7 = A (all on a line L1 : L1(x, y) = 0)
P2 = B, P5 = 0, P8 = 0(BC) (on a line L2(x, y) = 0)
P3 = C, P6 − 0(AB), P9 = (0(AB))C (on a line L3(x, y) = 0
These points all lie on Cf (R (since A, B, C, 0 do), and they also lie on Cg(R , where g(x, y) =
L1(x, y)L2(x, y)L3(x, y) . Furthermore, P1, P2, P3 lie on a line L. In the generic case, where all 9
of these points are distinct, the lemma lets us conclude that the remaining 6 points P4, . . . , P9 lie
on a quadratic. But! P4, P5, P6 also lie on a lineL′ , so L′ ⊆ CfqR, since L hits the quadratic in
3 > 2=degree(q) points. So, q is really a product of linear functions, implying that P7, P8, P9 lie on
a line, since otherwise one of these lies on L′, implying that it hits Cf (R in 4 > 3=degree(f) points,
so L′ ⊆ Cf (R, a contradiction. But this means that P7P8 = P9, i.e., A(0(BC)) = (0(AB))C !
If these 9 points are not all distinct, we appeal to “continuity”, by finding a nearby generic situation;
the limits of 3 sequences of points lying on lines is 3 points on a line. The details of this can (sort
of) be found in the text.....


