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We can now apply our geometric approach to more general polynomial equations, in particular to cubic equations. f(x, y)
has rational coefficients, and the line y = mx + r meets Cf (R) in two rational solutions, then p(x) = f(x,mx + r) is a
cubic polynomial with rational coefficients and two rational roots, and so, as before, the third root is also rational, and
gives a third rational point on Cf (R). But in this case there are three ways to find such lines:
(a): find two distinct rational points, and the line through them,
(b): find a double point (x0, y0) in Cf (R), then any line with rational slope through (x0, y0) will give f(x,mx+ r) has x0

as a double root,
(c): find a rational point (x0, y0), then for the tangent line to the graph of Cf (R), f(x,mx+ r) has x0 as a double root.
Taken in turn, these can in many cases find infinitely many rational points on a cubic curve.

For example, on the curve x3 + y3 = 9, starting from the point (2, 1), with f(x, y) = x3 + y3 − 9, we can compute
fx(2, 1) = 12, fy(2, 1) = 3, and so the tangent line is (12, 3) • (x− 2, y − 1) = 0 so y = 9− 4x, and so x3 + (9− 4x)3 − 9 =
(x − 2)2(180 − 63x), giving a new solution (20/7,−17/7) . Repeatedly using their tangent lines, we can find further
solutions.
A double point example: f(x, y) = y2 −x3+2x2 = 0 has fx = −3x2+4x, fy = 2y, and all three are 0 at (0, 0). If we look
at the lines through (0, 0) with rational slope, y = mx, and solve m2x2 −x3+2x2 = x2((m2+2)−x) = gives x = m2+2
and y = m3 + 2m.

Why do tangent lines y = mx + b give double roots of f(x,mx + b) = 0 at the point of tangency? This is just a little
(multivariate) calculus. If (a, b) is our rational point, then the equation for its tangent line is
fx(a, b)(x − a) + fy(a, b)(y − b) = 0 , and so we wish to solve

p(x) = f(x,−fx(a, b)
fy(a, b)

(x − a) + b) = 0, which has p(a) = 0 and

p′(a) = fx(a, b) + fy(a, b)L′(a) = fx(a, b) + fy(a, b)(−fx(a, b)
fy(a, b)

) = 0 , as desired.

Integer points on Cf (R), f(x, y) = x3 + y3 − M ? x3 + y3 = M = (x + y)(x2 − xy + y2) = AB, then |M | ≥ |B| =
|x2 − xy + y2| = (x − y
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integer solutions, by hand.


