Math 445 Number Theory

December 1, 2004

We can now apply our geometric approach to more general polynomial equations, in particular to *cubic* equations. f(x,y) has rational coefficients, and the line y = mx + r meets $C_f(\mathbb{R})$ in two rational solutions, then p(x) = f(x, mx + r) is a cubic polynomial with rational coefficients and two rational roots, and so, as before, the third root is also rational, and gives a third rational point on $C_f(\mathbb{R})$. But in this case there are three ways to find such lines:

- (a): find two distinct rational points, and the line through them,
- (b): find a double point (x_0, y_0) in $\mathcal{C}_f(\mathbb{R})$, then any line with rational slope through (x_0, y_0) will give f(x, mx + r) has x_0 as a double root,
- (c): find a rational point (x_0, y_0) , then for the tangent line to the graph of $\mathcal{C}_f(\mathbb{R})$, f(x, mx + r) has x_0 as a double root.

Taken in turn, these can in many cases find infinitely many rational points on a cubic curve.

For example, on the curve $x^3 + y^3 = 9$, starting from the point (2,1), with $f(x,y) = x^3 + y^3 - 9$, we can compute $f_x(2,1) = 12$, $f_y(2,1) = 3$, and so the tangent line is $(12,3) \bullet (x-2,y-1) = 0$ so y = 9-4x, and so $x^3 + (9-4x)^3 - 9 = (x-2)^2(180-63x)$, giving a new solution (20/7,-17/7). Repeatedly using their tangent lines, we can find further solutions.

A double point example: $f(x,y) = y^2 - x^3 + 2x^2 = 0$ has $f_x = -3x^2 + 4x$, $f_y = 2y$, and all three are 0 at (0,0). If we look at the lines through (0,0) with rational slope, y = mx, and solve $m^2x^2 - x^3 + 2x^2 = x^2((m^2 + 2) - x) = \text{gives } x = m^2 + 2$ and $y = m^3 + 2m$.

Why do tangent lines y = mx + b give double roots of f(x, mx + b) = 0 at the point of tangency? This is just a little (multivariate) calculus. If (a, b) is our rational point, then the equation for its tangent line is

 $f_x(a,b)(x-a) + f_y(a,b)(y-b) = 0$, and so we wish to solve

$$p(x) = f(x, -\frac{f_x(a, b)}{f_y(a, b)}(x - a) + b) = 0$$
, which has $p(a) = 0$ and

$$p'(a) = f_x(a,b) + f_y(a,b)L'(a) = f_x(a,b) + f_y(a,b)(-\frac{f_x(a,b)}{f_y(a,b)}) = 0$$
, as desired.

Integer points on $C_f(\mathbb{R})$, $f(x,y) = x^3 + y^3 - M$? $x^3 + y^3 = M = (x+y)(x^2 - xy + y^2) = AB$, then $|M| \ge |B| = |x^2 - xy + y^2| = (x - \frac{y}{2})^2 + \frac{3}{4}y^2 \ge \frac{3}{4}y^2$ so $|y| \le \frac{2}{\sqrt{3}}\sqrt{|M|}$ (and, by symmetry, $|x| \le \frac{2}{\sqrt{3}}\sqrt{|M|}$), so we can check for integer solutions, by hand.