Math 445 Number Theory
November 8, 2004

r has a repeating continued fraction expansion x = [ag,. .. ,an, b0, ... , by < x = r + 5/t for some r,s € Q , t € Z . Last time: enough
_ h! hl o+ h! _

to show this for a = [bg, ... ,b;m] = [bo, ... ,bm,a] . Then for [by, ..., by,] = kTm , o= k:nTk’ml ,so k! a®?+ k! _ja=hl a+h, |, s0
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« is the solution of a quadratic equation with rational coefficients, so a = ro + sov/t , as desired. The converse (<) direction follows an

argument parallel to one of your homework questions; our further explorations will not need this direction.
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, it will be useful to have the notation x’ = for the conjugate of x, that is, the other root of the

In what follows, for z =

quadratic having x as root. Our main result on periodic continued fractions is: If x = /n+ |[\/n|, then x = [ag, ..., ag] is purely periodic.
1
To see this, note that ' = |\/n] —v/n ,so -1 <z’ < 0. If we set z = [ag,...,a; + x;] = [ag,...,a;,(] (so (; = — and a;+1 = [(;]) then
T
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from our homework we know that (since \/n = [bg, b1,...] = [ag — [V/n],a1,a2,...]) x;= yn=mi and ;41 = ¢ = Vn O
i Vi —m; qi+1
. . . n-+m; n— Mit1
So wit1 = Civ1 — @ir1 , where ¢;gir1 = n — m? (which, inductively, defines ¢;11) , a;+1 = [(iv1], so % = a;+1 + \/_qiz ,
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and so m;+1 = a;4+1¢;+1 — m; (which, inductively, defines m;y1) . In other words, the formulas ¢;;1 = LAy = LLJ , and
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Mmir1 = ai+19i+1 — m; allow us to inductively define each of these symbols, starting from mo = |/n] and go =1 .

The key to the proof is that —1 < ¢; < 0 for all 4; the proof may be found at the end of the day’s notes. This implies that | —
i+1

] =lai—¢] = ai,
since a; < a; — (] < a; + 1. So a; can be recovered from (11 .

We know, from homework, that the continued fraction for y/n and therefore for \/n+ |\/n] (since they agree in all but the first term), becomes
periodic; past a certain point k, there is an m > 0 with agqsym = apys for all s > 0. That is, (x = (k+m - Let k and m be the smallest such
numbers (i.e., k = place where periodicity starts, m=length of the shortesst period). We claim: k = 0 . But this is just because if k£ > 0,
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then & = Coym = ¢, = (oypp = k-1 = |

1 _
_J = L—J = a/k-i— —1 - — = Ck = Ck-ﬁ- = —
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= (k-1 = ((k—1)+m , contradicting our choice of k . So k = 0 ; and so there is an m > 0 so that a,,+s = as for all s > 0. So
\/ﬁ—f— L\/ﬁj Z[ao,... ,am,l]z [ao,al,... ,am,l,ao] . Note that CLOZQL\/EJ,SO \/_:[L\/ﬁj,al,... ,am,l,QL\/ﬁJ].

x
Now back to Pell’s Equation! We know that if |N| < y/n, then every solution to * — ny?> = N has — = a convergent of \/n. But as we have
Y

just seen, \/n + |v/n] = [2|v/n],a1,... ,am_1] , and this will allow us to shed light on h? — nk?, to understand Pell’s equation better.

vn+ |vn) = 2|v/n],a1,. .. ,am_1] means (with ag = |\/n]) that /n = [ag, a1, ... , @m_1, 2a0]
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Wherever we choose to stop the continued fraction expansion of \/n, n = [ag, ... ,as,(s41] = [ag, ... ,a ], we find that
qds+1
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- ; s—1 n+ mg)hs + he_ . . ) . .
n= L1 ° B (v s)hs + dst1hs . Using this, we can calculate what h? — nk? equals; we will do this next time.
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Proof of —1 < (] < 0: Note that (; = M
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Ciny = 1 1 _ qi Cgivn = (M1 — aiqiv1)q Then ¢/ — —/n+m;_y o

1 = _ _ _ . f_ VT My
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But # = ¢p, so —1 < ¢} < 0 ; then we have, by induction, -1 </ = ({ —a; < -1 = -1< —— =/, <0.
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