From last time: If \(x \not\in \mathbb{Q} \) and \(b \in \mathbb{Z} \) with \(1 \leq b < k_{n+1} \), then for any \(a \in \mathbb{Z} \), \(|bx - a| \geq |k_n x - h_n| \).

Another sense in which convergents are the best possible rational approximations:

If \(x \not\in \mathbb{Q} \) and \(a, b \in \mathbb{Z} \) have \(|x - \frac{a}{b}| < \frac{1}{2b^2} \), then \(\frac{a}{b} = \frac{h_n}{k_n} \) for some \(n \).

The idea: if not, then \(|ak_n - bh_n| \geq 1 \) for every \(n \). But since \(k_n \to \infty \) as \(n \to \infty \), there is an \(n \) with \(k_n \leq b < k_{n+1} \). Then from above we know that \(|xk_n - h_n| \leq |xb - a| = |x - \frac{a}{b}| \cdot |b| < \frac{1}{2b^2} |b| = \frac{1}{2b} \). So \(|x - \frac{h_n}{k_n}| < \frac{1}{2bk_n} \), and then

\[
\frac{1}{bk_n} \leq \frac{|bh_n - ak_n|}{bk_n} = |\frac{a}{b} - \frac{h_n}{k_n}| = |(\frac{a}{b} - x) + (x - \frac{h_n}{k_n})| \leq |\frac{a}{b} - x| + |x - \frac{h_n}{k_n}| < \frac{1}{2b^2} + \frac{1}{2bk_n}.
\]

So \(\frac{1}{bk_n} = \frac{1}{bk_n} - \frac{1}{2bk_n} \leq \frac{1}{2b^2} \), so \(2b^2 < 2bk_n \), so \(b < k_n \), a contradiction. So \(\frac{a}{b} = \frac{h_n}{k_n} \) for some \(n \).

Pell’s Equation: solve \(x^2 - ny^2 = N \) with \(x, y \in \mathbb{Z} \). (WOLOG, \(x, y \geq 0 \))

If \(n < 0 \), then \(N = x^2 - ny^2 \geq x^2 + y^2 \Rightarrow x, y \leq \sqrt{N} \); can check all cases.

If \(n = m^2 \) is a perfect square, then \(N = x^2 - ny^2 = (x - my)(x + my) \Rightarrow x - my = a, x + my = b \) with \(ab = N \), and so \(2x = a + b, 2my = b - a \). Again, we can just check all factorizations \(ab = N \) to see what works.

If \(n > 0 \) is not a perfect square, then we can use the continued fraction expansion of \(\sqrt{n} \) to shed light on the solutions. If \(N > 0 \), then \(N = x^2 - ny^2 = (x - \sqrt{ny})(x + \sqrt{ny}) \), so \(0 < \frac{N}{x + \sqrt{ny}} = x - \sqrt{ny} \), so \(\frac{|N|}{x + \sqrt{ny}} \cdot |y| = |\sqrt{n} - \frac{x}{y}| \).

And since \(x - \sqrt{ny} > 0, x > \sqrt{ny} \), so \(\frac{x}{\sqrt{ny}} > 1 \) so \(\frac{x}{\sqrt{ny}} + 1 = \frac{x + \sqrt{ny}}{\sqrt{ny}} > 2 \), so \(x + \sqrt{ny} > 2\sqrt{ny} \) so

\[
\frac{|\sqrt{n} - \frac{x}{y}|}{|x + \sqrt{ny}| \cdot |y|} < \frac{|N|}{2ny} \cdot |y| = \frac{|N|}{2ny} \cdot \frac{1}{2y^2}.
\]

So if \(0 < N < \sqrt{n} \), then \(x^2 - ny^2 = N \Rightarrow |\sqrt{n} - \frac{x}{y}| < \frac{1}{2y^2} \Rightarrow \frac{x}{y} \) is a convergent of \(\sqrt{n} \).

(A similar argument works for \(-\sqrt{n} < N < 0 \).)

Which makes it more interesting to understand the convergents of \(\sqrt{n} \) ! The basic idea: \(x \) has a repeating continued fraction expansion \(x = [a_0, \ldots, a_n, b_0, \ldots, b_m] \Leftrightarrow x = r + s\sqrt{t} \) for some \(r, s \in \mathbb{Q}, t \in \mathbb{Z} \).

To see this, set \(\alpha = [b_0, \ldots, b_m] \), so \(x = [a_0, \ldots, a_n, \alpha] \). If \([a_0, \ldots, a_n] = \frac{h_n}{k_n} \), then \(x = [a_0, \ldots, a_n, \alpha] = \frac{h_n\alpha + h_{n-1}}{k_n\alpha + k_{n-1}}. \) If \(\alpha = r_0 + \sqrt{t}, \) then \(x = \frac{h_n(r_0 + s_0\sqrt{t}) + h_{n-1}}{k_n(r_0 + s_0\sqrt{t}) + k_{n-1}} = \frac{(h_n(s_0)(\sqrt{t}) + (h_n r_0 + h_{n-1})}{(k_n(s_0)(\sqrt{t}) + (k_n r_0 + h_{n-1})} = \frac{((h_n s_0)(\sqrt{t}) + (h_n r_0 + h_{n-1}))(k_n s_0)(\sqrt{t}) - (k_n r_0 + h_{n-1})}{k_n s_0^2 t - (k_n r_0 + h_{n-1})^2} \sqrt{t} = r + s\sqrt{t} \) with \(r, s \in \mathbb{Q} \).