Math 445 Number Theory

October 8, 2004

Recap: we know that the *Legendre symbol*, for p an odd prime and (a,p)=1, satisfies $\left(\frac{a}{p}\right)=(-1)^n$, where n=|A|=1 the number of elements in A, where $A=\{k:a_k>\frac{p}{2}\}$, where $ak=pt_k+a_k$ with $0\leq a_k\leq p-1$. We have also seen that if a is odd and (a,p)=1, then $\left(\frac{a}{p}\right)=(-1)^t$, where $t=\sum_{j=1}^{\frac{p-1}{2}}\lfloor\frac{aj}{p}\rfloor$. Along the way we learned that

$$(a-1)\sum_{j=1}^{\frac{p-1}{2}}j = p(t-n) + 2\sum_{i=1}^{n}q_i$$
 and $\sum_{j=1}^{\frac{p-1}{2}}j = \frac{1}{2}(\frac{p-1}{2})(\frac{p-1}{2}+1) = \frac{p^2-1}{8}$

When a=2, this last equation tells us that, mod 2, $\frac{p^2-1}{8} \equiv p(t-n) \equiv (t-n)$. But in this case t=0, since each of $\lfloor \frac{aj}{p} \rfloor = \lfloor \frac{2j}{p} \rfloor = 0$, since 2j < p for $1 \le j \le \frac{p-1}{2}$. So $\frac{p^2-1}{8} \equiv -n \equiv n \pmod 2$, so $\left(\frac{2}{p}\right) = (-1)^n = (-1)^{\frac{p^2-1}{8}}$.

Finally, we have the means to prove Gauss' Law of Quadratic Reciprocity:

Theorem: If p and q are distinct odd primes, then $\left(\frac{p}{q}\right)\left(\frac{q}{p}\right) = (-1)^{\left(\frac{p-1}{2}\right)\left(\frac{q-1}{2}\right)}$.

This is because $\left(\frac{p}{q}\right)\left(\frac{q}{p}\right) = (-1)^{t_1}(-1)^{t_2} = (-1)^{t_1+t_2}$, where $t_1 = \sum_{i=1}^{\frac{p-1}{2}} \lfloor \frac{qi}{p} \rfloor$ and $t_2 = \sum_{j=1}^{\frac{q-1}{2}} \lfloor \frac{pj}{q} \rfloor$.

But for every pair (i,j), with $1 \le i \le \frac{p-1}{2}$ and $1 \le j \le \frac{q-1}{2}$, exactly one of qi > pj or qi < pj is true. So $S_1 = \{(i,j) : qi > pj\}$ and $S_2 = \{(i,j) : qi < pj\}$ are disjoint sets whose union is the set of all pairs. So $|S_1| + |S_2| = (\frac{p-1}{2})(\frac{q-1}{2})$. But for each fixed i, the j's with $(i,j) \in S_1$ are those which satisfy $j < \frac{qi}{p}$, so there are $\lfloor \frac{qi}{p} \rfloor$ of them, so S_1 has $\sum_{i=1}^{\frac{p-1}{2}} \lfloor \frac{qi}{p} \rfloor = t_1$ elements. Similarly, for each fixed j, the i's with $(i,j) \in S_2$ are those which satisfy $i < \frac{pj}{q}$, so there are $\lfloor \frac{pj}{q} \rfloor$ of them, so S_2 has $\sum_{i=1}^{\frac{q-1}{2}} \lfloor \frac{pj}{q} \rfloor = t_2$ elements. Consequently, $t_1 + t_2 = |S_1| + |S_2| = (\frac{p-1}{2})(\frac{q-1}{2})$, as desired.

These facts, $\left(\frac{p}{q}\right)\left(\frac{q}{p}\right) = (-1)^{\left(\frac{p-1}{2}\right)\left(\frac{q-1}{2}\right)}$ for distinct odd primes, $\left(\frac{2}{p}\right) = (-1)^n = (-1)^{\frac{p^2-1}{8}}$, and $\left(\frac{-1}{p}\right) = (-1)^n = (-1)^{\frac{p-1}{2}}$ allow us to carry out the calculations of Legendre symbols much more simply than Euler's criterion would! For example

$$\left(\frac{17}{31}\right)\left(\frac{31}{17}\right) = (-1)^{(\frac{17-1}{2})(\frac{31-1}{2})} = (-1)^{8\cdot15} = 1, \text{ so } \left(\frac{17}{31}\right) = \left(\frac{31}{17}\right). \text{ But } \left(\frac{31}{17}\right) = \left(\frac{2\cdot17-3}{17}\right) = \left(\frac{-3}{17}\right) = \left(\frac{-1}{17}\right)\left(\frac{3}{17}\right) = (-1)^{8}\left(\frac{3}{17}\right) = \left(\frac{3}{17}\right), \text{ while } \left(\frac{3}{17}\right)\left(\frac{17}{3}\right) = (-1)^{8\cdot1} = 1, \text{ so } \left(\frac{3}{17}\right) = \left(\frac{17}{3}\right) = \left(\frac{3\cdot6-1}{3}\right) = \left(\frac{-1}{3}\right) = (-1)^{1} = -1, \text{ so } \left(\frac{17}{31}\right) = -1, \text{ and so the equation } x^2 \equiv 17 \pmod{31} \text{ has no solutions.}$$