Math 445 Number Theory

October 6, 2004

The Legendre symbol; for p an odd prime,

 $\left(\frac{a}{p}\right) = \begin{cases} 0 & \text{if } p|a\\ 1 & \text{if } a \text{ is a quadratic residue mod } p\\ -1 & \text{if } a \text{ is a quadratic non-residue mod } p \end{cases}$

By Euler's criterion, $\left(\frac{a}{p}\right) \equiv a^{\frac{p-1}{2}} \pmod{p}$.

Lemma of Gauss: Let p be an odd prime and (a,p)=1. For $1 \le k \le \frac{p-1}{2}$ let $ak=pt_k+a_k$ with $0 \le a_k \le p-1$. Let $A=\{k:a_k>\frac{p}{2}\}$, and let n=|A|= the number of elements in A. Then $\left(\frac{a}{p}\right)=(-1)^n$.

To see this, first note that $a_k \neq 0$ for every k, since $p \not| ak$. Let q_1, \ldots, q_n be the a_k 's greater then p/2, and let r_1, \ldots, r_m be the other a_k 's. Then $p-q_1, \ldots, p-q_n, r_1, \ldots, r_m$ are all $\leq \frac{p-1}{2}$, and are all distinct; $q_i = q_j$ or $r_i = r_j$ implies $p \mid ak_i - ak_j$, so $p \mid k_i - k_j$, contradicting that $-\frac{p}{2} < k_i - k_j < \frac{p}{2}$, and $p-q_i = r_j$ implies $p = q_i + r_j$ so $p \mid ak_i + ak_j$, contradicting that $0 < k_i + k_j \leq p-1$. This means that the sequence $p-q_1, \ldots, p-q_n, r_1, \ldots, r_m$ is identical to $1, 2, \ldots, \frac{p-1}{2}$, just written in a different order. But then $(p-q_1)\cdots(p-q_n)r_1\cdots r_m = \left(\frac{p-1}{2}\right)$!

But, mod p, $(p-q_1)\cdots(p-q_n)r_1\cdots r_m\equiv (-q_1)\cdots(-q_n)r_1\cdots r_m=(-1)^nq_1\cdots q_nr_1\cdots r_m\equiv (-1)^n(a\cdot 1)(a\cdot 2)\cdots(a\cdot \frac{p-1}{2})$, since the q_i 's and r_i 's are together a reordering of the a_k , each of which is $\equiv ak$. So $\left(\frac{p-1}{2}\right)!\equiv (-1)^na^{\frac{p-1}{2}}\left(\frac{p-1}{2}\right)!$ and since $(p,(\frac{p-1}{2})!)=1$, we have, mod p, $1\equiv (-1)^na^{\frac{p-1}{2}}$, so $\left(\frac{a}{p}\right)\equiv a^{\frac{p-1}{2}}\equiv (-1)^n$. But since p is an odd prime, $p\geq 3$, and since each of the two terms above are ± 1 , this implies $\left(\frac{a}{p}\right)=(-1)^n$, as desired.

Theorem: Let p be an odd prime and (a, 2p) = 1 (i.e., (a, p) = 1 and a is odd). Let $t = \sum_{j=1}^{\frac{p-1}{2}} \lfloor \frac{aj}{p} \rfloor$. Then $\left(\frac{a}{p}\right) = (-1)^t$.

To see this, we write $aj = pt_j + a_j$ as in the lemma above. Then $\lfloor \frac{aj}{p} \rfloor = t_j$ and so $t = \sum_{j=1}^{\frac{p-1}{2}} t_j$. But (*) $a \sum_{j=1}^{\frac{p-1}{2}} j = \sum_{j=1}^{\frac{p-1}{2}} aj = \sum_{j=1}^{\frac{p-1}{2}} pt_j + a_j = p \sum_{j=1}^{\frac{p-1}{2}} t_j + \sum_{i=1}^n q_i + \sum_{i=1}^m r_i = pt + \sum_{i=1}^n q_i + \sum_{i=1}^m r_i$, using the notation of the lemma. But since, as in the lemma, $p - q_1, \ldots, p - q_n, r_1, \ldots, r_m$ is a reordering of $1, \ldots, \frac{p-1}{2}$, we have

(**)
$$\sum_{j=1}^{\frac{p-1}{2}} j = \sum_{i=1}^{n} (p-q_i) + \sum_{i=1}^{m} r_i = pn - \sum_{i=1}^{n} q_i + \sum_{i=1}^{m} r_i$$
. Subtracting (**) from (*), we get: $(a-1)\sum_{i=1}^{\frac{p-1}{2}} j = p(t-n) + 2\sum_{i=1}^{n} q_i$

Consequently, since, mod 2, $a-1 \equiv 0$ (a is odd) and $2\sum_{i=1}^{n} q_i \equiv 0$, we have 2|p(t-n), and so since p is odd, 2|t-n|. So $(-1)^t = (-1)^n$; together with the lemma above, this gives our result.

For next time, it is worth noting that $\sum_{j=1}^{\frac{p-1}{2}} j = \frac{1}{2} (\frac{p-1}{2}) (\frac{p-1}{2} + 1) = \frac{p^2-1}{8}$.