Last time we found the result "If p is an odd prime then $x^2 \equiv -1 \pmod{p}$ has a solution $\leftrightarrow p \equiv 1 \pmod{4}$" useful. Now we will explore such equations more generally. When does the equation $x^n \equiv a \pmod{m}$ have a solution?

We will find it useful to first deal with the warm-up problem. When does $nx \equiv a \pmod{m}$ have a solution? For this, we have $nx \equiv a \pmod{m} \iff m|nx-a \iff a = nx-my$ for some $x,y \iff (n,m)|a$. Further, if $nx_0 \equiv a \pmod{n}$, then a complete set of incongruent solutions is given by (setting $k = (n,m)$)

$$x_0, x_0 + \frac{m}{k}, \ldots, x_0 + (k-1)\frac{m}{k}, \text{ since } m\frac{m}{k} = m\frac{n}{k}$$

So there are in fact (n,m) solutions, if there are any.

Turning now to the main question, $(*)$ $x^n \equiv a \pmod{m}$), we begin by supposing m is prime, so that there is a primitive root r mod m, i.e., $\text{ord}_m(r) = m-1$. Then either $m|a$ (so $a \equiv 0$ and $x = 0$ solves $(*)$) or $(a,m) = 1$. In the latter case, $a = r^s$ for some s. Since $(a,m) = 1$, any possible solution to $(*)$ must have $(x,m) = 1$, as well, and so we can write $x = r^t$ for some t. So the equation that we really wish to solve is

$$(**) \ (r^t)^n \equiv r^s \pmod{m} \quad \text{(where we wish to solve for t)}.$$

But this means we wish to solve $(r^{nt-s} \equiv 1 \pmod{m})$, which, since $\text{ord}_m(r) = m-1$, means $m-1|nt-s$, i.e., $nt \equiv s \pmod{m-1})$. But as we have just seen, this has a solution (and we know how many) $\iff (n,m-1)|s$. Translating this back into information about a, we find that $s = (n,m-1)q$ so $a = r^s = r^{(n,m-1)q}$, so, mod m,

$$a^{\frac{m-1}{(n,m-1)}q} = (r^{(n,m-1)q})^{\frac{m-1}{(n,m-1)}} = r^{(m-1)q} = (r^{m-1})^{q-1} \equiv 1 = 1$$

Conversely, if $a^{\frac{m-1}{(n,m-1)}} \equiv 1$, then $r^s a^{\frac{m-1}{(n,m-1)}} \equiv 1$. Therefore $\text{ord}_m(b) = m-1|s \frac{m-1}{(n,m-1)}$, so $(m-1)\frac{s}{(n,m-1)} = (m-1)y$, so $\frac{s}{(n,m-1)} = y$ is an integer. So $(n,m-1)|s$, which means $(**)$ has a solution, and we can follow the argument back up from there to see that $(*)$ has a solution. So we find:

If m is prime and $(a,m) = 1$, then $x^n \equiv a \pmod{m}$ has

$$\begin{cases} (n,m-1) \text{ solutions,} & \text{if } a^{\frac{m-1}{(n,m-1)}} \equiv 1 \\ 0 \text{ solutions,} & \text{if } a^{\frac{m-1}{(n,m-1)}} \not\equiv 1 \end{cases}$$

Specializing to $n = 2$, we have Euler’s Criterion:

If m is an odd prime and $(a,m) = 1$, then $x^2 \equiv a \pmod{m}$ has

$$\begin{cases} 2 \text{ solutions,} & \text{if } a^{\frac{m-1}{2}} \equiv 1 \\ 0 \text{ solutions,} & \text{if } a^{\frac{m-1}{2}} \equiv -1 \end{cases}$$

So for example, by checking that $13^2 = 169 \equiv -1 \pmod{17}$, so $13^8 \equiv 1 \pmod{17}$, we find that $x^2 \equiv 13 \pmod{17}$ has (two) solutions.