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Proposition: If (x, y) = 1 and xy = c2, then x = u2, y = v2 for some integers u, v .

Basic idea: write their prime factorizations x = pk1
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s . Since (x, y) = 1 their factorizations have
no primes in common. Since
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s , this is its prime decomposition. Since c2 is a square, all of the ezponents are even,
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Since a2+b2 = c2 implies a = 2uv , b = u2−v2 , c = u2+v2 , it is straightforward to see that any even number a = 2(n)(1)
, or any odd number b = (n + 1)2 − n2 = 2n + 1 , can occur on the left side of a Pythagorean triple a2 + b2 = c2 . Which
numbers can occur on the right-hand side , c = u2 + v2 , is a more involved question. [Certainly, 3 cannot be expressed
as a sum of squares...] Answering this question will lead us to some more interesting number theory! After noting that
(a2 + b2)(c2 + d2) = (ac + bd)2 + (ad − bc)2 = (ad + bc)2 + (ac − bd)2 , a more pointed question to ask might be : which
primes p can be expressed as p = u2 + v2 ? A bit of experimentation quickly leads us to the
Conjecture: A prime p is a sum of two squares ⇔ (p = 2 or) p ≡ 1 (mod 4) .
This is certainly true for 2 = 12 +12, and so what we need to show is (1) if p ≡ 1 (mod 4) is prime, then p = u2 +v2 , and
(2) if p ≡ 3 (mod 4) is prime, then p = u2 + v2 is impossible. Forgetting that we have already proved (2) [[u2, v2 ≡ 0 or 1
(mod 4) , so the sum can’t be ≡ 3]], it turns out that what is really relevant to the discussion is under what circumstances
the equation x2 ≡ −1 (mod p) has a solution! But first, we need:
Wilson’s Theorem: If p is prime, then (p − 1)! ≡ −1 (mod p) .
The idea: every k = 1, 2, . . . , p − 1 has an inverse, mod p . For everyone except 1 and p − 1, it is not k (but is unique),
so every factor in 2 · 3 · · · (p − 2) can be paired up with its inverse. So by reordering things, 2 · 3 · · · (p − 2) is a product
of 1’s, mod p , so is 1. Then (p − 1)! ≡ 1 · (p − 1) ≡ p − 1 ≡ −1 (mod p) , as desired.
This in turn allows us to show that
Theorem: If p is prime, the equation x2 ≡ −1 (mod p) has a solution ⇔ p = 2 or p ≡ 1 (mod 4) .
Checking this for p = 2 is quick (x = 1 works), and so we need to show that (1) if p ≡ 1 (mod 4) then x2 ≡ −1 (mod p)
has a solution, and (2) if p ≡ 3 (mod 4) then x2 ≡ −1 (mod p) has no solution.
To see the first, since p−1 = 4k for some k, we have, by Wilson’s Theorem, that 1 ·2 · · · (4k−1)(4k) ≡ −1 (mod p) . But,
mod p, 1 · 2 · · · (4k − 1)(4k) = 1 · 2 · · · (2k)(2k + 1) · · · (4k − 1)(4k) = 1 · 2 · · · (2k)(p− 2k)(p− (2k − 1)) · · · (p− 2)(p− 1) ≡
1 · 2 · · · (2k)(−2k)(−(2k − 1)) · · · (−2)(−1) = (2k)!(2k)!(−1)2k = ((2k)!)2 = x2 , where x = (2k)! . so x2 ≡ −1 (mod p)
has a solution.
The second half we will do next time.


