
Math 445 Number Theory

September 8, 2004

Finding factors of composite knots: if N = ab and a1, . . . an are chosen at random,
a is more likely to divide one of the differences ai −aj than N is. This can be
tested for by computing gcd’s, d = (ai − aj ,N); this number is 1 < d < N if
a (or some other factor) divides ai −aj but N does not, and finds us a proper
factor, d, of N . The problem with this method, however, is that it requires
n(n − 1)/2 gcd computations, which is too large. This can be remedied by
generating the ai pseudo-randomly.

The idea: choose a relatively simple to compute function, like f(x) = x2 + c.
Starting from some number a1, we generate a sequence by repeatedly applying
f to a1 ;

a2 = f(a1), a3 = f(a2) = f2(a1), . . . , ak = f(ak−1) = fk−1(a1), . . .
The point is that if ever we have a|ai − aj , then since

ai+1 − aj+1 = (a2
i + c)− (a2

j + c) = a2
i − a2

j = (ai − aj)(ai + aj)
we have a|ai+1 − aj+1 , as well. So (by induction!) a|ai+k − aj+k for all
k ≥ 0 . So we can test for occurances of 1 < (ai − aj ,N) < N by testing
only a relatively few pairs; we get the effect of testing many more of them for
free. In particular, we test (a2i − ai,N) for each i. This is effective, since if
1 < (aj−ai,N) < N for j > 2i, then 1 < (a2j−2i−aj−i,N) as well. So testing
a2i − ai will essentially test these other pairs at the same time. Turning this
into an algorithm:

Given N composite, choose a function f(x) = x2 + c and a starting point a1; set
b1 = f(a1) and then build the sequences ai = f(ai−1) and bi = f2(bi−1).
Compute (bi − ai,N) and
if for some i, 1 < (bi − ai,N) < N , stop: we have found a factor.
if (bi − ai,N) = N or i gets too large, reset the parameters: use a new a1 or
a new c.

We expect in the generic case for this process to find a factor by the time i gets
in the range of N1/4 (or rather, the square root of the smallest prime factor
of N), but this is not guaranteed.

