Math 445
Handy facts for the second exam

Don’t forget the handy facts from the first exam!

Continued Fractions.
If we look at each line of the calculation of g.c.d of a and b,
a = bQO + To, b= Toq1 + 1y ooy Th—2 = Tn—1Gn + Tny, 'n = 'n—1Gn+1 +0
they can we re-written as

%Zqur%o,i =g g T =g
To To T'n—1 Tn—1 Tn-1
When we put these together, we get a continued fraction expansion of a/b
I —
Nt
dn+1
which, for the sake of saving space, we will denote (qo, 1, ... ,qn+1)- Note that, conversely,
given a collection qo, ... ,q,+1 of integers, we can construct a rational number, which we
denote {(qo,q1, ... ,qny1) by the formula (*).

Formally, we can try to do the same thing with any real number z; i.e, “compute” the g.c.d.

of z and 1 :
r=ag+re, l=r0a1+7r1, ..., "p_2 =Tn_10n + 7y

Unlike for the rational number a/b, if z is irrational, we shall see that this process does not
terminate, giving us an “infinite” continued fraction expansion of z, (ag,ai,as...) . Our
main goal is to figure out what this sequence of integers means!

First, a slightly different perspective:

x = qo+ 1o with 0 < rp < 1 means gy = |z] is the largest integer < x; |blah| is the greatest
integer function. 1 = roq; +r1 with 0 < r; < ro means 1/rg = q1 + (r1/r0) = q1 + x1 with
0 <z <1,80 ¢ = |1/rg]. In general, the process of extracting the continued fraction
exapnsion of x looks like:

(**)  w=lz|+x0=10a0+z0,1/x0 = [1/20| +T1 =001+ 71,...,

1/xp_1 = |1/Tp-1] + Ty = an + zp, ...

If we stop this at any finite stage, then we can, just as in the case of a rational number a/b,

reassemble the pieces to give
T = (0,01, ,Gp-1,0n + Tpn) = (A0, A1, ... ,apn_1,0n, 1/Ty)

If we ignore the last x,, we find that {ag,a1,...,a,_1,a,} is a rational number (proof:
induction on n), called the n** convergent of x. The integers a,, are called the n** partial
quotients of z. Note that since 0 < xg < 1, 1/x9 > 1, so a1/geql. This is true for all later
calculations, so a; > 1 for all i/geql. This sort of continued fraction expansion is what is
called simple. We will, in our studies, only deal with simple continued fractions.

For example, we can compute that, for z = v/2, ag = 1, o = V2 —1, 1/xg = V241, a1 =2,
z1 = V2 — 1 = x0, so the pattern will repeat, and v/2 has continued fraction expansion
lef1,2,2,...). By computing some partial quotients, one can show that m has expansion
that begins (3,7,)



By looking at the expression for a continued fraction, that we started with, it should be
apparent that

( )= by =agt 1

A0y A1y e s Oy_1,0n) = (A0y A1y .v. yAp_1 + —) = a

0,1 n—1,Un 0,1 n—1 n 0 <CL1,... ,an—l,an>

From this it follows, for example, that (ag,a1,...,an-1,0,) = {(a0,a1,... ,ap_1,an, — 1,1) .
But these are the only such equalities:

Prop: If (ag,a1,...,an) = (bo,b1,...,bm) and an, b, > 1, then n = m and a; = b; for all

1 =20,...,n.

Computing (ag, a1, ... ,a,) from {(ag,a1,...,an-1):

(ag,a1,...,an) = Z—", where h_s =0,k_>=0,h_1 =1,k_1 =0, and for ¢ > 0,
" hi = a;h;—1 + h;—2 and k; = a;k;—1 + ki—o.

The proof is by induction. This, in turn implies:

For every i > 0, hik;_1 — h;_1k; = (—1)*~! (which implies that (h;, k;) = 1), and

hiki—a — hi—ok; = (—1)"a; .

Note: None of these formulas actually require that the a;’s are integers.

1.
for z = (ag,a1,... ,an_1,0, + T,) = {ag,a1,... ,0n_1,ap, a:_>’ if we set
n
<a0, a1y...,0p—-1, an> = Tn,
then these formulas imply that
1
Ton < Tontz and re,_1 > ron4q for every n, and roy, —rop—1 = ———
k2n—1k2n

And since the numerator of

T — (A0, A1y v yAp_1,0n) = (A0, A1, ... ,Qn_1,0n + Tp) — (A0, 1, -« ,Ap_1,05),

we can compute, i8S Ty (hp_1kn_o — hy_oky,) (and the denomenator is positive), we have
that re, < x < rop41. So since ro, — rop—1 — 0 as n — oo, we find that r, — z, In
particular, |z — r,| < |rn—1 — rn| = 1/(kn—1ky) for every n. This implies that if the
x, are never 0 (i.e., the continued fraction process is really an infinite one), then since
0 < |kn(z—ry)| = lknx — hy| < 1/kp—_1, we find that z is not rational.

Note that since a; Z 1 for every 1> 0, k_l = 0, ko = 1, and k, = aik,’_l + ki_g 2 ki—l + ki_g
for every i > 1, we can see by induction that k, > the n*® Fibonacci number (which is
defined by F; = F;_1 + F;_2), and the Fibonacci numbers grow very fast!

Based on these facts, we denote x = lim (ao, ..., a,) = (ag,a1,...) . Then
n— 00
1

A

which in turn implies that:
If (ag,a1,...) = (bo,b1,...), then a; = b; for all i.
hy : : .
If 1 <b < ky, then |z — %| > |z — k_| for all integers a; in fact if 1 < b < kpy1, then

|bx — a| > |knx — hy| for all integers a.

1 h,
If 2 ¢ Q and a,b € Z, with |a:—%| < @,then % = . for some n.



Repeating continued fraction expansions: A continued fraction (ag,as,...) will repeat (i.e,
Ap, = Ay for all n > N) precisely when z,_1 = 25,11, since from (**) above, all of the
calculations of the partial quotients, starting from some fixed number, will depend only on
that fixed number. A real number x has a repeating continued fraction expansion if and
only if z is an (irrational) root of a quadratic equation, what we call a quadratic irrational.
In particular,

For any non-square positive integer n, /n+ |v/n] = (2a9, a1, ... an) is purely periodic. This
implies that /n = (ag, a1, . ..an, 2a¢)

Pell’s Equation.

It turns out that the continued fraction expansion of /n can help us find the integer solutions

x,y of the equation
(¥5%) 2? —ny?=N
for fixed values of n and N. This equation is known as Pell’s equation.

First the less interesting cases. If n < 0, then any solution to N = z2 — ny? > 22 4 ¢2
has |z|, |y| < V/N, which can be found by inspection. If n = m? for some m, then N =
22 —m2y? = (x — my)(x + my), so x — my, z + my both divide N, so, e.g., their sum, 2z

divides N2. We can then find all possible z, and so all solutions, by inspection. We now

focus on finding solutions for n > 1 not a perfect square. \/n is therefore irrational.

Then if 1 < N < /n is not a perfect square, then N = 22 — ny? implies that
x N 1 r h
[vVn — —|

N < < T f
= ——, 50 — = — for some m.
y o vyl lyl o 2vny? 292y ky
(The same, it turns out, is true for —/n < N < —1.) But which m?
Vn = {ap, a1, .. .am,2ap) means that \/n = (ag,ay,...am,ao++/n). In general, at any point
where we stop computing the continued fraction of \/n, we find that

1
\/ﬁ = <b0,b1, .bs, @% where — = \/ﬁb+ -
Ts
(so a and b take on only finitely many values, because x5 does). But then we can compute
b

that
Vi =
(LY kg + ko

In particular, solutions to 22 — ny? = 1 exist, because b = 1 occurs as the denomenator of x;
fori=m+1,2m+ 1,3m + 1,.... These are either all odd (if m is even), or every other
one is odd. For these values, i — 1 is even, so h? —nk2 = b(h;k;_1 —h;_1k;) = (—1)""1b =1

(\/ﬁ+a)hs + hs—l

, which implies that h2 — nk2 = b(hsks_1 — he_1ks) = (—1)"=1b .

There is an alternative approach to generating solutions to (***). If we know that 2 —ny? =
N and 23 — ny3 = 1, then
(2 — )53 — m)™ = N = (& — i) (0 — Vo)™ (& + /7)o + o)™
But (22 — ny?)(z3 — ny2)™ = A — \/nB for some A, B, and then (22 + ny?)(2% + nyd)™ =
A + y/nB (because of the properties of conjugates of quadratic irrationals). Then (A —
VnB)(A—+ynB)=A%?>—-nB?>=N .

Diophantine Equations.



Equations like 2 — 17y? = 3, for which we seek solutions with z,y € Z form a class of equa-
tions called Diophantine Equations. Typically, we have two goals: decide if the equation
has a solution; if it does, then we wish to describe all of the solutions.

In principle, a Diophantine equation may really be a system of equations:

fi(z1,...,zn) =0,..., fm(z1,...,2,) = 0; in theory, these can be replaced by one equation

[fi(z1,. oo szn)? + - [fm(m1, ... ,2,)]? = 0, although this rarely makes finding a solution
easier!

For example, by the Euclidean algorithm, the Diophantine equation

ar +by =c

has a solution < (a, b)|c. The Euclidean algorithm will provide a solution to axo+bzy = (a,b);
then if a = ag(a,b), b = bo(a,b), ¢ = co(a,b), then the solutions to ax + by = c are
T = coxg + nbg,y = coyo — nag for n € Z .

As another example, for the equation az? + by = ¢ to have a solution, a X + bY = ¢ must; so
we need (a,b)|c. But this is in general not sufficient; treating the original equation mod b,
we need az? = ¢ (mod b), which may not have a solution. If aA = 1 (mod b), for example,
then we need Ac to be a square, mod b; Euler’s criterion can help us decide if it is.

Pythagorean triples: Solutions to 22 + y? = 22. If (z,y, 2) is a Pythagorean triple, then
if (z,y) = d > 1 then d|z, as well, so (z/d)? + (y/d)? = (z/d)? is a solution, as well. We
therefore look for primitive solutions, i.e., those with (x,y) = (y,2) = (z,2) = 1. BY
looking at the equation mod 4, we can see that z must be odd, and = and y have opposite
parity; let us assume that x is even. Then by rewriting the equation as x = 2u, and
2 =22 —y?>=(2+y)(z —y), we find that

U2 — (Z;y)(z 5 y), but (Z-;y,z 5 Y

ing that z = 72 + 52, y = 72 — 5%, and © = 2rs . (Note that r ands must have opposite

parity, so that y and z are odd.) Conversely, we can compute that such values of z,y, z

satisfy 22 + y2 + 22, so

27 32, lmply_

) = 1, so each must be a perfect square r

(z,y,2) = (2rs,r? — 2,12+ s?) , (r,s) = 1, r — s odd, gives all primite Pythagorean triples.

The above argument used: (a,b) =1 and ab = ¢? implies a = u2, b = v? for some u,v .

By contrast, the equation z* + y* = 22 has no solution with z,y,2 € Z and zyz # 0;
consequently, z* + y* = 2* also has no solutions.

Local versus global solutions.

If the equation f(x1,...,x,) =0 has a solution with z; € Z for all 7, then it is certainly the
case that f(zi,...,2,) = 0 has a solution with z; € R for all 7 (use the same solution!).
Similarly, the equation f(zi,...,x,) =0 (mod N has a solution for every N. Solutions

to these latter equations are called [ocal solutions; by analogy, a solution to our original
Diophantine equation is then called a global solution. This implies that if we can show
that an diophantine equation has no local solution for some n or for R, then the original
equation has no global solution.

For example, by working mod 5, we can show that the equation 222 + 5y2 = 922, since it has
no primitive solutions. Any such primitive solution would also solve 22 = 2722 = 222. If

4



5|z then 5|z, so 25|5y2, so 5|y, and we do not have a primitive solution. Then we may invert
z mod 5; finding w with zW = 1 (mod 5) anbd multiplying both sides of our equation
with w?, we get (zw)? = 2 (mod 5); but a quick check of all representatives mod 5 (like
1,2,3,4), or using Euler’s criterion, we find that 2 is not a square mod 5.

There are, however, equations which have all types of local solutions, but no global one; the
first such equation found was z* — 17 = 2y2 .

Geometric solutions.

For equations such as 22+ 10y? = 1922 where we know one solution (like (3,1,1)), we can find

all solutions using a geometric process. Setting X = x/z, Y = y/z, our equation becomes
(FFFF) X2 4+ 10Y? = 19 (in this case, an ellipse)

for which we know one (rational) solution; (3,1). Our goal is now to find all rational solutions
(the denomenator will be our z). But if we imagine having another rational solution (a, b),
then the line through (3, 1)(inourcase)and(a,b) will have rational slope. If we take the
equation for this line and plug it into (****), we get a quadratic equation with (because of
the rational slope) rational coefficients, for which we know one, rational, solution (in our
case, X = 3). The other solution must therefore be rational, and the corresponding point
on the line then has rational coordinates. In our example, this procedure looks like

Y =r(X—=3)+1,s0 22+10(r(X —3)+1)2 = 19, i.e., (X2—9)+10r3(X —3)24+20r(X —3) = 0,
i.e., (X —3)(X+3+107>X —30r2+20r) = 0. So X = 3 or (10r2+1)X —(30r2—20r—3) = 0,
i.e., (setting r = a/b)

30r? —20r —3  30a® — 20ab — 3b?
X = =
10r2 4+ 1 10a? + b2

so z = 30a% — 20ab — 3b2%, z = 10a® + b? and (by plugging into the equation for the line)

y = —(10a? + 6ab — b?) provide solutions.

Sums of four squares.

For every n € N, there are z,y, z,w € Z so that 22 + y? + 22 + w? = n.
Elements of the proof:
(@f +yf + 27 + wi) (23 +y3 + 23 + w3) =
(w122 + Y1y2 + 2122 + w1wa)? + (T1y2 — Tay1 + 2ow1 — 21w2)* +
(T122 — 2221 + Yrwa — wiy2)? + (T1ws — T2wy + Y221 — Y122)
so we may focus on primes p. p =2 = 12 4+ 12 4+ 02 4 02, so focus on odd primes. Then
0 <xzy < (p—1)/2 and x # y implies 2 # 32 (mod p), so for any a, x> and a — 32,
with 0 < 2,y < (p — 1)/2 must have a value, mod p, in common (otherwise 2% + y? — a
takes on p + 1 different values, mod p). So 22 + y2 = —1 (mod p) has a solution. Then
22 +y2+12 +02 = Mp for some M; with the restrictions on z, vy, we have M < p. Choose
the smallest positive M with Mp = 22 + y? + 22 + w?. M is odd, since otherwise (after
renaming the variables to group them by parity)

2

M -y, ,x+y, 2w ZFtw,
M M
If M > 1, then choose —3 < x1,y1,21, w1 < - with x = x; (mod M), etc. then



24+ 2wl =22+ 92+ 22+ w? =0 (mod M), so 22 + y? + 22 + w? = NM with
(from the restrictions on xy, etc.) N < M. Then

NM?p = (23 + 93 + 23 + w?)(2? + y®> + 2% + w?) = a sum of four squares with, we can
compute, every term a multiple of M! Dividing through by M2, we find that Np is a sum
of four squares, with N < M, contradicting the choice of M. So M =1, and we are done.



