How do you determine if a number n is prime?

Check if every $x < n$ has $x \mid n$.
Check if every $x \leq \sqrt{n}$ has $x \mid n$.

If $(a,n) = 1$ and $a^{\phi(n)} \equiv 1 \pmod{n}$ then n is not prime.

[Not perfect: $n = 216 = 2^3 \cdot 3^3$]

Consider $n = 3317$.

$2 \mid 3317$, $3 \mid 3317$, $4 \nmid 3317$.

$p = 16\cdot 201$.

$3317 \equiv 1 \pmod{16}$.

$3317 \equiv 1 \pmod{201}$.

$3317 \equiv 1 \pmod{11}$.

$3317 \equiv 1 \pmod{17}$.

Thus, 3317 is prime.

A composite n for which $a^{\phi(n)} \equiv 1 \pmod{n}$ is called a pseudoprime to the base a.

Wilson's theorem: If p is prime, then $(p-1)! \equiv -1 \pmod{p}$.

Computationally one can see:

- If p is prime, then $x^2 \equiv 1 \pmod{p} \Rightarrow x \equiv \pm 1$.
- If n is odd, write $n-1 = 2^kd$ with d odd.
- Then if n is prime $a^{n-1} \equiv 1 \pmod{n}$, look at $a^d, a^{2d}, a^{3d}, \ldots, a^{kd}$ (mod n).
- If the last one which is not 1 must be -1.
- So if $n-1 = 2^kd$ and $a^{kd} \equiv 1, a^{2kd} \not\equiv 1$ then n is composite.
\[n-1 = 2^k d \]

If \(a^{2^j d} \equiv 1 \pmod{n} \) for some \(j \leq k \), then

- \(n \) is a strong pseudoprime to \(b \) base \(a \).
- \(n \) is SPSP(\(a \)).

Fact: if \(n \) is not prime, then \(n \) fails the SPSP test for at least \(\frac{3n}{4} \) values of \(a \) (mod \(n \)).

(I.e. a random choice of \(a \) will show \(n \) is composite \(\frac{3}{4} \) of the time.)

Miller-Rabin SPSP Test

- Given \(n-1 = 2^k d \) with odd \(d \), compute
 - \(a^2, a^d, a^{2d}, \ldots, a^{2^{k-1}d} \pmod{n} \)

If \(b_{2^j} \equiv 1 \pmod{n} \) or \(b_{2^j} \equiv -1 \pmod{n} \), then \(n \) is a prime.

P

How about finding factors of a composite number?
Finding factors:
Pollard rho method

If we know that \(n \) is composite (e.g., via Miller-Rabin or FLT), how do you factor it?

If \(n = pq \) (\(p < q \), say), then the basic idea is that

If \(u_1, u_2, \ldots, u_k \) are chosen at random, they are more likely to be distinct, mod \(n \), than they are mod \(p \). I.e., it is far more likely that for some \(i \) \(\text{gcd}(u_i - u_j, n) = \frac{n}{p} \)

\((u_i - u_j, n) \) is a factor of \(n \).

The question is, how big should we expect \(k \) to be?

The prob that \(1, u_1, \ldots, u_k \geq p \) are all distinct is

\[
(1 - \frac{1}{p}) (1 - \frac{2}{p}) \cdots (1 - \frac{k-1}{p}) \propto \exp \left(\frac{k^2}{2p} \right)
\]

It typically needs to check \(2^{2n} \) or so for a good chance.

But need to compare \(\binom{k}{2} = \frac{(k-1)k}{2} \) things, \(\propto n^{3/4} \) calculations.
To make this into a practical method, we need to generate the \(u_i \) "pseudorandomly."

Typically, choose \(u_{i+1} = f(u_i) \pmod{n} \) where
\[
f = \text{poly, e.g. } f(x) = x^2 + b.
\]

This has the advantage that if
\[
u_i \equiv u_j \pmod{p} \text{ then } f(u_i) = u_{i+1} \equiv u_{j+1} = f(u_j)
\]

so the first time \(u_0 \equiv u_j \pmod{p} \) with \(i \neq j \geq 0 \)

further pairs
\[
\begin{array}{c}
\vdash u_i \equiv u_{i+r} \quad \text{all } i \geq r_0 \\
\vdash u_{i+r} \equiv u_{i+kr}
\end{array}
\]

so the first time \(kr \geq r_0 \), we have \(u_{kr} \equiv u_{kr} \pmod{p} \) all \(k \geq 1 \).

So, e.g.
\[
\begin{array}{c}
\vdash u_{kr} \equiv u_{2kr}
\end{array}
\]

So the Pollard \(p \)-test is usually set up as
\[
u_0 = \text{whatever} \quad \text{and } u_{i+1} = u_i^2 + b \pmod{n}
\]

then test \(\gcd(u_{kr} - u_m, n) \) if it is \(\geq 1 \) and \(u_m \),

we have found a factor.
fractions and repeating decimal representations.

\[
\frac{1}{3} = .3333\ldots \quad \frac{1}{7} = .142857142857\ldots = \overline{.142857}
\]

\[
\frac{1}{11} = .090909 \quad \frac{1}{12} = .166666\ldots = \overline{.16}
\]

every fraction has an (eventually) repeating decimal expansion.

Why? FLT!

Ex. \[
\frac{1}{13} = \frac{0.76923076923}{10^6} = 0.76923
\]

\[
= \frac{76923}{10^6} \cdot \left(1 + \frac{1}{10^6} + \frac{1}{10^{12}} + \ldots\right)
\]

\[
= \frac{76923}{10^6} \cdot \frac{1}{1 - \frac{1}{10^6}} = \frac{76923}{10^6} \cdot \frac{10^6}{10^6 - 1} = \frac{76923}{10^6 - 1}
\]

\[\text{I.e.} \quad 10^6 - 1 = 76923 \cdot 13\]

\[\text{I.e.} \quad \frac{10^6 - 1}{13} = 76923\]

More generally, \[
\frac{1}{n} = \text{blah} \quad \frac{1}{n} = \overline{\text{blah}}
\]

\[\text{if } 10^k - 1 = (\text{blah}) \cdot n \]

\[\iff \quad 10^k \equiv 1 \pmod{n}\]
But what if have \(10^k \equiv 1 \) some \(k \)? \(\phi(n) = 1 \) !

I.e. \((2, n) = (5, n) = 1 \). And what will \(\ell \) be?

\(\phi(n)! \) well, something dividing \(\phi(n) \).

\[
10^k \equiv 1 \pmod{n} \quad \text{then} \quad \ell = \left(k \phi(n) \right) / \phi(n) \quad \text{so}
\]

\[
10^{\frac{k}{n}} \equiv \left(10^k \right)^{\frac{1}{n}} \equiv 1 \pmod{n} \quad \text{is smallest \(n \) divides \(\phi(n) \)}
\]

\(\square \cdot (2^n) = (5^n) = 1 \), then \(\frac{1}{n} \). (blah) where

\[
\text{length of (blah) = period } | \phi(n).
\]

Which \(n \) have the most possible period \(= \phi(n) \)?

\[
\text{Need } (10, n) = 1 \quad \text{and} \quad 10^{\phi(n)/n} \neq 1 \quad \text{for } 1 < k \mid \phi(n).
\]

\[
\text{What about when } (10, n) > 1? \quad n = 2^k 5^k \quad (p, n) = 1
\]

Then \(\frac{1}{n} = \frac{1}{(2^k 5^k p)} = \frac{a}{(2^k 5^k)} + \frac{b}{p} = \frac{pa + (2^k 5^k) b}{(2^k 5^k) p}
\]

\[
= \frac{a 2^k}{(10^k)} + \frac{b}{p}
\]

\(\leadsto \) so after some initial muddles, same period as \(\frac{1}{p} \).

1801: Gauss conjectured that there are only may primes \(p \) with period \(p - 1 \). Still open!