Math 445 Number Theory

Introduction/Review of concepts from abstract algebra

An integer \(p \) is prime if whenever \(p = ab \) with \(a, b \in \mathbb{Z} \), either \(a = \pm n \) or \(b = \pm n \).

[For sanity’s sake, we will take the position that primes should also be \(\geq 2 \).]

Fundamental Theorem of Arithmetic: Every integer \(n \geq 2 \) can be expressed as a product of primes: \(n = p_1 \cdots p_k \).

If we insist that the primes are written in increasing order, \(p_1 \leq \ldots \leq p_k \), then this representation is unique.

The Division Algorithm: For any integers \(n \geq 0 \) and \(m > 0 \), there are unique integers \(q \) and \(r \) with \(n = mq + r \) and \(0 \leq r \leq m - 1 \).

[Note: this is also true for any integers \(n, m \) with \(m \neq 0 \), although you need to replace “\(m - 1 \)” with “\(|m - 1| \)” .]

The basic idea: keep repeatedly subtracting \(m \) from \(n \) until what’s left is less than \(m \).

Notation: \(b|a = “b \text{ divides } a” \) = “\(b \) is a divisor of \(a” \) = “\(a \) is a multiple of \(b” \), means \(a = bk \) for some integer \(k \).

If \(b|a \) and \(a \neq 0 \), then \(|b| \leq |a| \).

If \(a|b \) and \(b|c \), then \(a|c \)

If \(a|c \) and \(b|d \), then \(ab|cd \)

If \(p \) is prime and \(p|ab \), then either \(p|a \) or \(p|b \)

Notation: \((a, b) = \gcd(a, b) \) = greatest common divisor of \(a \) and \(b \)

Different, equivalent, formulations for \(d = (a, b) \):

(1) \(d|a \) and \(d|b \), and if \(c|a \) and \(c|b \), then \(c \leq d \).

(2) \(d \) is the smallest positive number that can be written as \(d = ax + by \) with \(a, b \in \mathbb{Z} \).

(3) \(d|a \) and \(d|b \), and if \(c|a \) and \(c|b \), then \(c|d \).

(4) \(d \) is the only divisor of \(a \) and \(b \) that can be expressed as \(d = ax + by \) with \(a, b \in \mathbb{Z} \).

If \(c|a \) and \(c|b \), then \(c|(a, b) \)

If \(c|ab \) and \((c, a) = 1 \), then \(c|b \)

If \(a|c \) and \(b|c \), and \((a, b) = 1 \), then \(ab|c \)

If \(a = bq + r \), then \((a, b) = (b, r) \)

Euclidean Algorithm: This last fact gives us a way to compute \((a, b) \), using the division algorithm:

Starting with \(a > b \), compute \(a = bq_1 + r_1 \), so \((a, b) = (b, r_1) \). Then compute \(b = r_1q_2 + r_2 \), and repeat: \(r_{i-1} = r_1q_{i+1} + r_{i+1} \). Continue until \(r_{n+1} = 0 \), then \((a, b) = (b, r_1) = (r_1, r_2) = \ldots = (r_n, r_{n+1}) = (r_n, 0) = r_n \).

Since \(b > r_1 > r_2 > r_3 > \ldots \), this process must end, by well-orderedness.

We can reverse these calculations to recover \((a, b) = ax + by \), by rewriting each equation in our algorithm as \(r_{i+1} = r_i - r_iq_{i+1} \) and then repeatedly substituting the higher equations into the lowest one, in turn, working up through the list of equations.
Congruence modulo n: Notation: $a \equiv b \pmod{n}$ (also written $a \equiv b \pmod{n}$) means $n|(b-a)$

Equivalently: the division algorithm will give the same remainder for a and b when you divide by n.

Congruence mod n is an equivalence relation.

The congruence class of $a \pmod{n}$ is the collection of all integers congruent mod n to a:

$[a]_n = \{ b \in \mathbb{Z} : a \equiv b \pmod{n} \} = \{ b \in \mathbb{Z} : n|(b-a) \}.$

Fermat’s Little Theorem. If p is prime and $(a, p) = 1$, then $a^{p-1} \equiv 1 \pmod{p}$

Because: $(a\cdot 1)(a\cdot 2)(a\cdot 3)\cdots(a\cdot (p-1)) \equiv 1\cdot 2\cdot 3\cdots (p-1) \pmod{p}$, and $(1\cdot 2\cdot 3\cdots (p-1), p) = 1$.

Same idea, looking at the a’s between 1 and $n-1$ that are relatively prime to n (and letting $\phi(n)$ be the number of them), gives

If $(a, n) = 1$, then $a^{\phi(n)} \equiv 1 \pmod{n}.$

If the prime factorization of n is $p_1^{a_1} \cdots p_k^{a_k}$, then $\phi(n) = [p_1^{a_1}(p_1 - 1)]\cdots[p_k^{a_k}(p_k - 1)].$

The integers \mathbb{Z}, the integers mod $n \mathbb{Z}_n$, the real numbers \mathbb{R}, the complex numbers \mathbb{C} are all rings.

A homomorphism is a function $\varphi : R \to S$ from a ring R to a ring S satisfying:

for any $r, r' \in R$, $\varphi(r+r') = \varphi(r)+\varphi(r')$ and $\varphi(r \cdot r') = \varphi(r) \cdot \varphi(r').$

The basic idea is that it is a function that “behaves well” with respect to addition and multiplication.

An isomorphism is a homomorphism that is both one-to-one and onto. If there is an isomorphism from R to S, we say that R and S are isomorphic, and write $R \cong S$.

Example: if $(m, n) = 1$, then $\mathbb{Z}_{mn} \cong \mathbb{Z}_m \times \mathbb{Z}_n$. The isomorphism is given by

$\varphi([x]_{mn}) = ([x]_m, [x]_n)$

The main ingredients in the proof:

If $\varphi : R \to S$ and $\psi : R \to T$ are ring homomorphisms, then the function $\omega : R \to S \times T$ given by $\omega(r) = (\varphi(r), \psi(r))$ is also a homomorphism.

If $m|n$, then the function $\varphi : \mathbb{Z}_n \to \mathbb{Z}_m$ given by $\varphi([x]_n) = [x]_m$ is a homomorphism.

Together, these give that the function we want above is a homomorphism. The fact that $(m, n) = 1$ implies that φ is one-to-one; then the Pigeonhole Principle implies that it is also onto!

The above isomorphism and induction imply that if $n_1, \ldots n_k$ are pairwise relatively prime (i.e., if $i \neq j$ then $(n_i, n_j) = 1$), then

$\mathbb{Z}_{n_1 \cdots n_k} \cong \mathbb{Z}_{n_1} \times \cdots \times \mathbb{Z}_{n_k}$. This implies:

The Chinese Remainder Theorem: If $n_1, \ldots n_k$ are pairwise relatively prime, then for any $a_1, \ldots a_k \in \mathbb{N}$ the system of equations

$x \equiv a_i \pmod{n_i}$, $i = 1, \ldots k$

has a solution, and any two solutions are congruent modulo $n_1 \cdots n_k$.

A solution can be found by (inductively) replacing a pair of equations $x \equiv a \pmod{n}$, $x \equiv b \pmod{m}$, with a single equation $x \equiv c \pmod{mn}$, by solving the equation $a + nk = x = b + mj$ for k and j, using the Euclidean Algorithm.