Math 417 Problem Set 5

Starred (*) problems are due Friday, February 26.

- 35. (Gallian, p.96, # 10) If G is a group and $a, b \in G$, show that there is an $x \in G$ with xax = b if and only if there is an element $c \in G$ with $c^2 = ab$.
 - [Hint: when you find a way to build such a c from a, b, and x, then that should tell you what x should/could be (in terms of a, b, and c)!
- 36. (Gallian, p.119, # 8) Show that the alternating group $A_8 \leq S_8$ contains an element of order 15.
- (*) 37. (Gallian, p.119, # 10) Find an element of S_{10} that has the largest order of any element in S_{10} .
- 38. (Gallian, p.119, # 13) Show that if $\alpha: S \to S$ is a function from a set S to itself and $\alpha(\alpha(x)) = x$ for every $x \in S$, then α must be a <u>bijection</u>.

[Such a function is usually called an *involution*.]

- (*) 39. Show that if $\alpha \in S_n$ has $|\alpha|$ odd, then α is an even permutation!
- 40. (Gallian, p.120, #32) If $\beta = (1, 2, 3)(1, 4, 5)$, express β^{99} as a product of disjoint cycles.
- 41. (Gallian, p.121, #48) Show that in the symmetric group S_7 , there is <u>no</u> element $x \in S_7$ so that $x^2 = (1, 2, 3, 4)$. On the other hand, find two distinct elements $y \in S_7$ so that $y^3 = (1, 2, 3, 4)$.
- (*) 42. (Gallian, p.122, # 69) Show that every element of S_n can be written as a product of transpositions of the form (1,k) for $2 \le k \le n$. (Assume that n > 1 so that you don't have to worry about the philosophical challenges of $S_1 = \{()\}...$)

[Hint: why is it enough to show that this is true for transpositions?]