Math 417 Group Theory Second Exam

Things we (will) have talked about since the first exam

Normal subgroups. The integers mod n can be viewed either as having elements {0, 1,..., n—
1}, or the elements are equivalence classes of integers, where a ~ b if n|b — a. In the latter
case, we add elements by adding representatives of equivalence classes (and then need to
show that the resulting ‘element’ is independent of the choices made). This notion can be
generalized:

For G a group and H < G a subgroup, defining a multiplication on (left) cosets by (aH)(bH) =
(ab)H requires, to be well-defined, that a;H = aoH and bjH = byH implies (a1b)H =
(agby)H. That is, we need aj'ag, by by € H implies (a1by) " (azby) = by *(ay a?)by (b7 'by) is
in H. This then requires b;'(a;'a?)b; = by *hb; € H for every b € G and h € H. So we
define:

H < G is a normal subgroup of G if g7*Hg = {9 'hg : h € H} = H for every g € G.

Then the multiplication above makes the set of (left) cosets G/H = {gH : g € G} a group.
H = eqH is the identity element, and (gH)™' = g~ H. The order of G/H is the number of
cosets of H in G, i.e., the index [G : H] of H in G. We use H < G to denote “H is normal
in G”. We call G/H the quotient of G by H.

Alternate view: g'Hg = H means Hg = gH, i.e., the left and right cosets of H in G coincide.

Examples: A, < S,; a conjugate of an even permutation is even.

Z(G) <G, for any group G; h € Z(G) implies g~'hg = h € Z(G).

In a dihedral group D,, = symmetries of a regular n-gon, the set of rotations forms a normal
subgroup; a conjugate of a rotation is a rotation.

SL(n,Z)<GL(n,Z), SL(n,R) <GL(n,R), and SL(n,Z,,) < GL(n,Z,) .

In an abelian group, every subgroup is normal.

Inverse images: If ¢ : G — H is a homomorphism, and K < H, then ¢ }(K) = {g € G :
©(g) € H} is a subgroup of G, the inverse image of K under . If in addition, K < H, then
e Y(K)«G.

In particular, {eg} < H, so ¢ '({eg}) = ker(¢) = the kernel of ¢ is a normal subgroup of
G. If H<G, then ¢ : G — G/H given by g — gH is a (surjective) homomorphism. Then
o '({ee/u}) = H. So every normal subgroup occcurs as the kernel of a homomorphism.

On the other hand, the image of a normal subgroup need not be normal! But it is, if the
homomorphism is surjective.

First Isomorphism Theorem. If ¢ : G — H is a surjective homomorphism, then, setting
K = ker(p), we find that a K = bK implies p(a) = ¢(b), and so there is a well-defined
(‘induced’) function @ : G/K — H, which is a bijective homomorphism, i.e., an isomorphism.
In general, replacing H wwith ¢(G) to make it surjective, we find that @ : G/ker(yp) — ¢(G)
is an isomorphism. So the image of ¢ is isomorphic to a quotient of G.

An abelian-ness criterion: if G/Z(G) is cyclic, then G is abelian (and then G/Z(G) =1 (!)).

The homomorphism G — Aut(G) given by g — ¢,, where ¢ (x) = gzg~' has image Inn(G)
= the inner automorphisms of G, and kernel Z(G), and so G/Z(G) = Inn(G).

If H <@, then G acts (by left multiplication) on the (left) cosets of H in G; if [G : H] = n,
we can think of this as permutations of n elements, i.e., S,,, so this gives a homomorphism
G — S,,. The kernel N is then normal in G, and g € N < gaH = aH for all a, so gH = H



ie, g € H,so N < H. Moreover, G/N = subgroup of S,, so [G : N| = |G/N]| divides
|Sn| = n!l. So every subgroup of index n contains a normal subgroup of index dividing n!.

In particular, if [G : H] = 2, then H<G. In general, N = Nycqg~'Hg = the intersection of all
of the conjugates of H in G.

Direct products/direct sums. We can ‘glue’ groups together as, essentially Cartesian
products: If G, H are groups, then G x H, with multiplication (g1, h1)(g2, h2) = (9192, h1ho)
is a group. When we use this multiplication, we denote the group by G & H = the direct
sum of the groups G and H.

Examples: vector spaces! We use coordinate-wise addition.

|G® H|=|G|-|H|; If G and H are abelian then G @ H is abelian.

If A< G and B < H,then A® B <G @& H. But not all subgroups arise this way!

Z(GOH)=Z(G)® Z(H)

If op: G — Hy and ¥ : G — H, are homomorphisms, then we can build a homomorphism
@Y :G— H & Hyby (p®Y)(g9) = (©(g9),%(g)). The kernel of this is ker(yp) N ker(¢)).
So, e.g, the homomorphism Zy; — Zs @ Z; given by (z mod 21 — (z mod 3,z mod 7) is
injective, hence bijective (by the pigeonhole principle), hence an isomorphism! [All that was
really required was that 3 and 7 are relatively prime; the generalization to more factors is,

essentially, the Chinese Remainder Theorem.|

The same map gives a homomorphism 73, — Z3 @ Z%, which is still a bijection, giving an
isomorphism!

In general, if you have a collection ; : G — H; of homomorphisms that can ‘separate elements’,
i.e. if © # y then there is an i so that p;(x) # p;(y), then @;p; : G — ®;H; is injective, so
G is isomorphic to a subgroup of ®;H;.

An application of this: if |G| = p* for some prime p, then G is abelian. In fact, either G = Z
or G =7y, D ZLy.

Group-based (public key) cryptography.

Sending secret messages: The basic idea is that we assume that your enemy (= ‘Eve’ =
‘evesdropper’) can see anything you transmit. So a message must be encoded by you (‘Alice’)
(think: as a sequence of 0’s and 1’s) in such a way that only the intended recipient (‘Bob’)
can decode it. Typically, this is done by converting the message in a standard way into 0’s
and 1’s, and then add (in @®;Z !) a fixed sequence that both Alice and Bob know to the
message. Adding the string ( = a ‘key’) the first time encrypts the message; adding it to the
encrypted message decrypts the message (since (x +y) +y = z in Zy).

The difficult part: how do Alice and Bob go about agreeing on a key? Back in the day this was
done by physically sending a list of daily keys; modern cryptography does this by exchanging
in public information that allows Alice and Bob to construct a secret key.

Diffie-Hellman: The first (1970’s) public key key-exchange system used Z; for p a (large)
prime. The idea is that, as we have seen, Z; is a cyclic group, and so has a generator some
P € Z;. Alice and Bob agree on a p and P, and then each chooses a (secret) exponent n4, ng
and transmit to one another vy = P™ mod p (to Bob) and ap = P™® mod p (to Alice).
Both then have the information to compute P"4"8 = [P"4]"8 = o} = [P"5]|"4 = a3* (Bob
can compute the first version, Alice can compute the second). They then use this as the
basis (takes its representation mod 2 7) for an encryption string.

The point to this is that Eve has ‘only’ seen p, P, a4, and ag. She knows that ay = P"4
mod p (and there is only one n4 between 0 and p — 1 that works), but does not know n4.
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The point is that the function n — P™ mod p is (we think!) what is known as a one-way
function: it is very efficient to compute (using, in this case, successive squaring [compute
P? mod p] and the base 2 representation of n,), but it is very diffiicult to invert: knowing
P™ mod p, find na (in this case, this is called the discrete logarithm problem). And (we
think!) there is no way to compute P™4"5 mod p, from the public information, without first
recovering either ny or ng. This is considered secure enough (for p large enough!) that it
is routinely used to protect banking information, your cellphone conversations, and internet
commerce generally.

Ko-Lee-Cha-Han-Cheon: Recently (since 2000), key exchange systems have been devised that
rely on the non-abelian-ness of groups. The first of these begins with a group G containing
two subgroups A, B < G so that for any a € A and b € B, we have ab = ba. Then starting
with an agreed upon g € G, Alice picks an a € A and sends Bob a = aga™?!, and Bob picks a
b € B and sends Alice 8 = bgb™! then v = (ab)g(ab)™" = a(bgb™')a™! = aBa~! is something
that Alice can compute; but v = (ab)g(ab)™! = (ba)g(ba)™* = b(aga=t)b~! = bab™! can also
be computed by Bob. This is their shared secret key.

Example: G = GL(n + m,Z,), A = the block diagonal matrices with an m x m identity
matrix in the lower-right corner, and B = the block diagonal matrices with an n x n identity
matrix in the upper-left corner. Matrices chosen one from each always commute!. If you
want to ’hide’ this block diagonal structure, pick a matrix x at random and use the conjugate
subgroups rAz~! and xBx~!, instead; zaz~! and xbxr~! will still commute!

In this system, the enemy/evesdropper Eve knows G, g, a, and 3. To build the key, (we think!)
Eve must, from g and o = aga™!, recover a € A (this is not quite true; see below). This is
called the conjugacy search problem: knowing g € G and that h = zgz~! for some z, find x
I Unlike the discrete log, which has been (relatively) well-studied, not much is known about
how difficult we should expect conjugacy search to be. In some groups (abelian groups!) it
is utterly trivial; in others, like GL(n,Z;) it can be quite quick; B = X AX ! means (¥)
BX = XA for some known matrices A, B and an unknown matrix X. But (*) is really a
system of n? linear equations in the entries of X, which we can solve using (‘just’) linear
algebra....

It turns out, you do not really need to solve conjugacy search to ‘break’ Ko-Lee. It is enough,
given g and x = aga™', to find a1, ay € A so that z = a;gay (we don’t need ay = a;'). [Some
people call this the decomposition search problem.] This is because if you know aga™ = a;gas
and bgb~! = by gb, then you can compute (ab)g(ab)™' = a1bigasbs, since elements of A and
B commute. Whether or not decomposition is ‘easier’ than conjugacy isn’t clear...

Anshel-Anshel-Goldfeld: A different cryptosystem which relies on non-ablelian-ness uses com-
mutators xyr~'y~! instead. In this system, we start with a group G and (finite) subsets
A =Hay,...,a,} and B = {by,...,b,} of G. Alice chooses a secret word (i.e., product)
a = a; ---a; of elements of A and sends to Bob the group elements a; = abja™t, ..,
m = abyat. Bob chooses a secret word § = bj, - - - bj, built fro B, and sends the elements
B1 = Ba B, ..., By = Pa,B~ . Their shared secret is the commutator aSa~'3~'. Bob
can compute this as a(b;, ---bj,a 71 = (abj,a™) - (abj,a™) ™ =, -, 07!, using
information he has and Alice sent, since he knows how he built 5. Alice can compute this
as aﬁ(ai_kl . ~ai_11)ﬁ_1 = aﬁi_kl = -Bl-_ll from information she has and Bob sent. (They both
need to know how to invert elements in G....)

This system allows for more groups GG to be used; we don’t need to know how to find commuting
subgroups. The security of the system rests on the simultaneous conjugacy search problem



(SCSP): given alist (ay, xayz™t), ..., (a,, za,z~ 1) of pairs of elements of G and the knowledge
that one element conjugates the first entries to the second, find x ! Again, we think that
recovering the commutator aSa~'S~! generally requires you to solve SCSP for one of the
two lists; and (we think!) there are groups in which SCSP is ‘hard’.

For both of these systems, much of the security rests on choosing the right group G. Such
groups are called platform groups, and the study of which groups are good or bad for this
purpose is the subject of ongoing research. Most such groups are finite (as an aid to com-
putation). Which makes the next subject of interest!

Sylow Theory. Work carried out in the 1870’s highlighted how knowledge of certain sub-
groups of a (finite) group G can help us understand questions like “what are all of the groups
of a given order n?”. This has come to be known as Sylow theory (after its discoverer). It
starts with

Proposition: If G is a finite abelian group and p is a prime which divides |G|, then there
is an element z € G with order p. [The proof consists of picking an element y € G; if p
divides |y| then a power of y will work; otherwise we build an inductive argument and use
the (inductive) hypothesis that G/(y) has an element of order p to find an = € G with z(y)
of order p and show that a power of this x has order p.]

A key ingredient to understanding finite groups is the class equation, which come from studying
conjugation in a group, as an action of G on itself. Specifically, the homomorphism G —
Aut(G) given by g — ¢,, where p,(x) = grg™" [s0 @, = @, 0 5] gives an action, and the
orbit of z € G, orbg(z) = {gzg™ : g € G} is the conjugacy class cl(x) of x in G. The
stabilizer of z, stabg(z) = {g € G : grg ' =2} ={g€ G : gr = xg} = Cg(x) is the
centralizer of z in G. The orbit-stabilizer theorem then tells us that |G| = |cl(z)] - [stabg(z)|,
and so |cl(z)| = [G : Cg(x)] (which then divides |G]). |cl(z)| = 1 precisely when z € Z(G).
If we choose one representative for each conjugacy class of size > 1, then noting then G is
partitioned into disjoint conjugacy classes, we find that

|G| = |Z(G)| + X][G : Cg(x)], where the sum is taken over the cl(z) of size > 1 (and so each
|G : Cg(x)] > 1).

This is the class equation. It is a fundamental result for counting things in a group. For
example:

Proposition: If |G| = p* for some prime p, then |Z(G)| > 1; every group of prime-power order
has non-trivial center. [This is because in the class equation every [G : Cg(z)] > 1 divides
p* and so is a multiple of p. Therefore |Z(G)] is a multiple of p.]

If H < G, then G acts (by conjugation) on the conjugates # = {gHg™' : g € G} of H in
G, and the orbit-stabilizer theorem again tells us that, noting that stabg(H) = {g € G
gHg™' = H} = Ng(H) = the normalizer of H in G, we have |#| = [G : Ng(H)| divides
|G : H] (and hence divides |G]).

Sylow theory focuses on subgroups (and elements) of G whose orders are a power of a given
prime p. [Such (sub)groups are call p-groups.]

(First) Theorem: If G is a finite group, p is prime, and p* divides |G|, then G contains a
subgroup H with |H| = p*. [The proof is again an induction on |G|; either p* divides one of
the Cg(x) (which are proper subgroups, when |cl(x)| > 1), letting us find H in Cg(H), or
p divides |Z(G)|. Then we can find an = € Z(G) of order p and use induction on G/(z), to
find a subgroup H of order p*~1. Then p~1(H), where ¢ : G — G/(x), has order p*.

Corollary: If p is prime and p divides |G|, then there is an element of G of order p.



A p-Sylow subgroup of G is a subgroup H with |H| = p* and |G| /p* is relatively prime to p.
The first theorem tells us that, for every prime p, G has a p-Sylow subgroup. The remaining
theorems tell us about these subgroups.

(Second) Theorem: Every subgroup K of G of order p¥ is contained in a p-Sylow subgroup. [In
fact, given a p-Sylow subgroup H, K acts in the conjugates # of H, and an orbit-stabilizer
argument, using that |#| is relatively prime to p, shows that K fixes one of the elements H;
of #¢, which in turn implies that K < H,.|

An immediate consequence of (the proof of) the second theorem is that the p-Sylow subgroups
of G are all conjugate (one is contained in, hence equal to, a conjugate of the other).

(Third) Theorem: The number |#/| of p-Sylow subgroups of G is congruent to 1 mod p, and
divides [G : H]. [This comes from a more careful count of the orbits of H under conjugation,
when |H| = p* and [G : H] is relatively prime to p.]

Taken together, these results provide a powerful tool for understanding the structure of a
group, based (almost) solely on its order. For example:

A group of order 35 = 5-7 has (cyclic) Sylow subgroups of order 5 and 7, and |#5| = |#-| = 1,
i.e, both are normal (their normalizers are both GG). Then G/Hjy and G/H; are both (cyclic)
groups, and the ‘natural’ homomorphism G — G/Hs & G/H; is injective (the kernel is
Hs N H; = {eg}), and therefore, since both groups have order 35, is surjective. So G is
isomorphic to a direct sum of groups of order 7 and 5, i.e., to Z; & Zs (which is turn is
= Zs5). So every group of order 35 is cyclic.

A group of order 225 = 32 - 52 has Sylow subgroups of order 9 and 25. |#3| divides 25 and is 1
mod 3, and so is either 1 (and so Hj is normal) or 25. |#5| divides 9 and is 1 mod 5, and so
is equal to 1 (and so Hj is normal). If H; <G, then as above we can build an isomorphism
G — G/H3;®G/Hs. But |G/H;s| =25 =5% and |G/H;s| = 9 = 32, and so both quotients are
abelian and so G is abelian, and is isomorphic to a direct sum of one of Zgs or Z5®Zs with one
of Zg or Z3 @ Zs3. On the other hand, if |#3| = 25, then since H5 <G we have that Hz acts in
Hs by conjugation, yielding a homomorphism Hs — Aut(Hs). But textrmAut(Hs) is either
Zys (if Hs = Zos), which has order 20, or GL(2,Zs5) (if Hy = Z5 & Zs), which has order 480.
But the only homomorphism Hs — Zj; is trivial, so in this case elements of Hs commute
with elements of Hy, and so G is abelian. In the other case, there are homomorphisms
H; — GL(2,Zs); by Sylow theory (!), there are elements of order 3 in GL(2,Zs) to map to.
In this case conjugation will be non-trivial, and so G will be non-abelian.

In this last case, we can say still more. Since Hs < G, the product set HsHs = {hk : h €
Hj, k € Hs} is a subgroup of G, and multiplication in this subgroup looks like (hyk1)(hoks) =
(hylk1hoki'])(kik2), where kyhok! € Hs since Hs is normal. Furthermore, Hs Hy = G, since
the map Hs x Hy — HsHs is injective (hiky = hoky means hy thy = koky' € HsNHs = {eq}),
and hence maps onto G. So the group multiplication is ‘determined’ by how Hjs conjugates
elements of Hs, i.e., by the homomorphism Hs — Aut(Hj).

This last situation occurs often enough that this construction is given a name. If G and H are
groups, and ¢ : H — Aut(G) is a homomorphism, then M = G x H, with multiplication
(91, h1)(g2,ha) = (g1 - [p(h1)](92), haha) is a group, and G x {ey} is (check!) a normal
subgroup of M. Such a group is called a semidirect product of G and H, and is denoted
G x H. So what we were finding above is that in the last case(s), G is isomorphic to Hs X Hj.

A final example: if |G| = 3-17-23 = 1173, then |#3| is 1 or 17-23 = 391, |#17] is 1 or 69,
and |#(23| is 1. But if |#3] = 391, then there are 391 distinct subgroups of order 3, and so
(since pairs intersect only in eg) G has 782 elements of order 3. And if |#17| = 69, then G



has 69 - 16 = 1051 elements of order 17. But a group of order 1173 can’t do that (there are
then at least 782 4+ 1051 = 1833 elements...). So at least one of H3 and H;; (in addition to
H33) must be normal. In fact, applying arugments like the first example to G/Hs or G/ Hq;
and G/H3 implies that two of these are abelian, which forces G to be abelian, so both Hj
and H,; are normal!

These kind of techniques can, with work, typically enable us to identify all of the groups with
a given (small...) order.

Shuffling cards. We can use our understanding of group theory to analyse problems which
appear to have little to do with groups. For example, a deck of cards (with an even number
2n of cards) can be ‘perfectly’ shuffled in two ways by splitting the deck into two stacks of
n and interleaving them in one of two ways. These can be represented by two permutations

of 2n letters:
1 2 .- 25 26 27 28 --- 51 52 1
13 .-~ 49 51 2 4 ... 50 52 an

12 .-~ 25 26 27 28 --- 51 52

(2 4 --- 50 52 1 3 --- 49 51)

The first is an outshuffle, and the second is an inshuffle. A basic question to ask (these live in

the finite group Sss is: what is the order of these permutations? How many perfect shuffles

will return the deck to its original position? By thinking of these differently, we can find

the answer. For the outshuffle, dropping the first and last (fixed) numbers and shifting by
1, and then thinking modulo 51, the permutation 7y becomes T':

12 - 24 25 26 27 --- 49 50 12 - 24 25 26 27 --- 49 50
2 4 --- 48 50 1 3 --- 47 49 2 4 --- 48 50 52 54 --- 98 100

This is the ‘permutation’ “multiply by 2, and then reduce modulo 51”. That is, T'(k) = 2k
mod 51 . So T"(k) = 2™ - k mod 51, and so T"(k) = k for all k precisely when 2" = 1 mod
51. SO the order of the outshuffle is the order of 2 in Z%, | Which happens to be 8; so 8
outshuffles will return a deck to its original position. [Note that this also tells us the orbit

of every k under successive multiplication by 7'; most have orbits of size 8 (when k is not
(one more than) a multiple of 17, while 75(18) = 35 and 7;(35) = 18.

For the inshufffle, thinking modulo 53, it is
<1 2 ... 25 26 27 28 ... 51 52)

2 4 --- 50 52 54 56 --- 102 104

and so it is multiplication by 2 modulo 53; N (k) = 2k mod 53. So the order of N is the order
of 2 in Z%,, which is 52. In fact, N"'(k) = K for the first time when m = 52, for all k, so N
is a 52-cycle!

This kind of analysis works the same for deck of any (even) size 2n; the outshuffle is (ignoring
the outer two cards) multiplication by 2 modulo 2n — 1, and the inshuffle is multiplication
by 2 modulo 2n + 1, and so the order of the permutations are thhe orders of 2 in Z3, ; and
Zs,, 1, respectively.

Wallpaper groups. Our first encounter with groups was as the symmetries of some object.
Returning to that theme, we can introduce ‘structures’ on the plane in the form of tilings:
a tile is (essentially) a polygon or collection of polygons, and a tiling is a way to cover the
plane by copies of the tiles, overlapping only along their edges. Many familiar tilings can
be found all around us; squares, equilateral triangles, regular hexagons, and even any single
quadrilateral can tile the plane. We also saw how a pentagon (with two right angles, shaped



like a ‘house’) can tile the plane. A wallpaper group (or tiling group, or crystallographic
group) is the group of symmetries of a tiling, that is, the group of rigid motions of the plane
that carries each tile of a tiling to another tile of the same tiling. For the tilings described
above, these groups contain translations, reflections, glide reflections, and rotations.

A fundamental result, that was observed by crystallographers, is:

Theorem: If a wallpaper group GG contains a non-trivial translation, then every rotation in G
has order either 2, 3, 4, or 6.

The proof uses the Law of Cosines!

The Fundamental Theorem of Finite Abelian Groups. Our work with Sylow theory
tells us that if G is abelian and |G| = p%* - - - pF» is the prime factorization of |G|, then G has
(Sylow) subgroups H; of orders pf Since G is abelian, these subgroups are normal, and,
in fact, the map Hy ® --- ® H,, — G sending (hy,...h,) — hy---h, is a homomorphism
(since G is abelian) and injective, and so is an isomorphism. To completely classify the finite
ablelian groups, it is then enough to do so for groups of prime-power order. This we can do:

Theorem: If G is an abelian group and |G| = p* for some prime p, then G = Lihs DB -+ DB Lo
for some numbers k; > --- >k, and by +---+ k, = k.

This is proved, as with most of our other results of this type, by induction on k. We pick the
element z with largest possible order p*', and then build the quotient group H = G/(z) and
(by induction) an isomorphism Zk, @ - - - @ Zykm — H. When can then ‘lift” this map to a
map to G, and then build a homomorphism (z) @ (Z,k, © - -+ @© Zykm) — G, which we can
then show is an isomorphism! To build the ‘lift’ thhe fact that = has largest possible order
plays a key role....

Solving Rubik’s Cube. Many puzzles are ‘permutation puzzles: pieces move around ex-
changing places, and the goal is to return the pieces to an original configuration. Such
puzzles can be analyzed and solved using group theory, and in particular using an inder-
stadning of how permuations combine. For example, a ‘basic’ rotation of a face of a Rubik’s
Cube permutes four corner cubes and four middle cubes. But in a symmetric group, the
disjoint cycle structure of an element x and of a conjugate of x are the same, and so any
conjugate of a basic rotation also permutes four corner and four middle cubes. Using this,
we can construct explicit ‘moves’ which carry out specific 4-cycles and, using compositions,
specific 3-cycles. This enables us to return every cube to its original position. But corner
cubes can also rotate (order=3), and middle cubes can flip (order=2). Thinking in terms
of moves ‘acting’ on the small cubes (or their painted squares), the moves above give us
an element in the (intersection of the) stabilizers of every cube, which is a (much smaller!)
subgroup of the Rubik’s cube group, isomorphic (it turns out) to Z' @Z%. In particular, it is
abelian! Constructing sequences of moves which lie in this subgroup, and which flip/rotate
(pairs of) cubes, completes the solution to Rubik’s Cube!



