
Is Z
∗
n
= 〈10〉 ? and repeating decimal expansions.

When we write 1

7
= .142857, what we really mean is that

1

7
= 142857

106
+ 142857

1012
+ 142857

1018
+ · · · = 142857

106

∑∞
n=0

( 1

106
)n = 142857

106
· 1

1−10−6 = 142857

106
· 106

106−1
= 142857

106−1
,

which really means that

7 · 142857 = 106 − 1, i.e., 7|106 − 1, i.e., 106 ≡7 1,

and 6 is the smallest power of 10 which is congruent to 1 modulo 7 (since otherwise the
repeating decimal for 1

7
would be shorter), i.e.,

|10| = 6 in Z
∗
7
.

This relationship between repeating decimals and the group Z
∗
n
holds more generally (and

the proof is identical to the argument above)! The length of the repeating decimal expansion
of 1

n
, when n and 10 are relatively prime, is the order of 10 in Z

∗
n
. [When n and 10 are not

relatively prime, you need to first remove all factors of 2 and 5 from n (which contribute to
the non-repeating initial part of the decimal expansion of 1

n
) before computing the order of

10; e.g., 1

6
has repeating part of length 1, because |10| = 1 in Z

∗
3
.]

As we have just seen, 1

7
has repeating decimal of length 6, so |10| = 6 in Z

∗
7
. On the other

hand, in class we showed that |10| = 16 in Z
∗
17
, and so we now know that the length of the

repeating decimal for 1

17
is 16 (and we can compute the term that repeats, as 10

16−1

17
(!)).

Since we know that |Z∗
7
| = 6 and |Z∗

17
| = 16, what these order calculations also tell us is that

Z
∗
7
= 〈10〉 and Z

∗
17

= 〈10〉, that is, both of these groups are cyclic, and are generated by 10.

There is a conjecture, originally due to Gauss, that there are in fact infinitely many integers n
so that [gcd(10, n) = 1 and] the repeating decimal for 1

n
has length n−1; that is, |10| = n−1

in Z
∗
n
). [Note that if n is not prime, then it is not possible for |10| to equal n − 1, since

|Z∗
n
| < n − 1 (the factors of n do not lie in Z

∗
n
) and we know that |10| ≤ |Z∗

n
|, since the

elements 1, 10, 102, . . . , 10|10|−1 must be distinct.] This conjecture remains unproven to this
day, however! A computation using Maple finds that the first several prime numbers p so
that Z∗

p
= 〈10〉 (and so 1

p
has decimal expansion of length p− 1) are:

p = 7, 17, 19, 23, 29, 47, 59, 61, 97, 109, 113, 131, 149, 167, 179, 181, 193, 223, 229, 233,
257, 263, 269, 313, 337, 367, 379, 383, 389, 419, 433, 461, 487, 491, 499, 503, 509, 541, 571,
577, 593, 619, 647, 659, 701, 709, 727, 743, 811, 821, 823, 857, 863, 887, 937, 941, 953, 971,
977, 983, 1019, 1021, 1033, 1051, 1063, 1069, 1087, 1091, 1097, 1103, 1109, 1153, 1171, 1181,
1193, 1217, 1223, 1229, 1259, 1291, 1297, 1301, 1303, 1327, 1367, 1381, 1429, 1433, 1447,
1487, 1531, 1543, 1549, 1553, 1567, 1571, 1579, 1583, 1607, 1619, 1621, 1663, 1697, 1709,
1741, 1777, 1783, 1789, 1811, 1823, 1847, 1861, 1873, 1913, 1949, 1979, 2017, 2029, 2063,
2069, 2099

On the other hand, considerable progress has been made on the conjecture; in fact there is
a stronger conjecture, due to Emil Artin, that if k is not a perfect square, then Z

∗
p
= 〈k〉

for infinitely many primes p. [Even more, it is conjectured that the fraction of p so that
Z
∗
p
is generated by k, as p goes to infinity, converges to the same constant, approximately

0.3739558 (“Artin’s constant”).] In 1986 David Heath-Brown proved that Artin’s conjecture
fails for at most two prime numbers k, but his proof is non-constructive, and to date there
is not a single value of k for which the conjecture is known to be true!


